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1 Introduction

Rattlesnake is the MOOSE [1, 2] (Multiphysics Object-Oriented Simulation Environment) based application for sim-
ulating the physics of radiation transport. Radiation transport studies the motion of particles, usually neutrons, pho-
tons or electrons, etc. and their interactions with background materials [3, 4, 5, 6, 7, 8]. The fundamental quantity of
interest in radiation transport is the statistically averaged radiation distribution or flux in space (dimentionality 3),
time (1), direction of motion (2) and energy (or frequency) (1), forming a seven-dimensional phase space. Various
reaction rates are secondary in the sense that they are computed from the primary flux and the background material
properties; however, reaction rates are typically more interesting for the analyst or when coupling to other physics,
e.g. heat conduction or thermo-hydraulics. Radiation transport calculations receive feedback within a multiphysics
environment through temperature and density changes, which predominantly change how radiation particles in-
teract with the background nuclei. Accurate prediction of the flux is essential to the design and operation of nuclear
facilities for the purpose of safety and economics. For example in nuclear fission reactors, neutron-induced fissions
and the accumulated radiative isotopes are the main heat source. Predicting whether the heat can be removed from
the reactor core under all circumstances without violation of safety limits is critical to the safety of nuclear reactors.

The physics of radiation transport can be described with the linear Boltzmann equation (LBE) or the radiation
transport equation (RTE). Interaction among radiation particles can be neglected because the radiation density is
typically several orders of magnitude smaller than the density of background nuclei. A radiation particle is thus
much more likely to collide with a background nucleus than to collide with another particle. In neutron transport
the average neutron life time measured from its birth to its extinction is much smaller than the neutron half life,
and hence neutron decay can be ignored. Gravity is also typically neglected in most simulations on the engineering
scale because the change of direction of motion due to gravity is negligible during neutron lifetimes. Bulk motion
of background nuclei is neglected because we assume its speed is much smaller than the typical speed of individual
radiation particles. When the above-mentioned conditions are not met, the RTE needs to be enhanced accordingly.
This theory manual will not cover those off-normal conditions. We refer readers to [9, 10, 11] for more information.

There are two fundamentally different ways of modeling radiation transport: statistical or Monte Carlo methods
and deterministic methods [3, 12] . The Monte Carlo methods tracks individual particles’ histories by sampling
the distance to the next collision, the nuclide it interacts with, the type of collision, and the out-going direction in
case scattering occurred; the sampling is based on proper probability density functions that can be derived from the
geometry and material properties. If a sufficient number of particles is simulated, the statistical errors of the reaction
rates or quantities of interest can reach a level that is smaller than the errors introduced by other sources, such as
the uncertainty of the nuclear data, present in the simulation. In deterministic methods the RTE is discretized into
an algebraic system of equations, which can be solved numerically. The seven-dimensional phase space needs to
be discretized which poses a challenge due to the much larger number of unknowns than in other disciplines of
physics with smaller dimensionality, such as thermal conduction. Monte Carlo methods and deterministic methods
can be combined in certain ways resulting into the so-called hybrid methods [13]. Rattlesnake is a deterministic
transport solver and this manual is exclusively about deterministic methods.

Fundamental nuclear data describing the likelihood per unit path length of radiation interacting with matter is
required for solving the RTE; this data is referred to as nuclear cross sections. Cross sections usually depend on
the incident energy in a complicated manner due to nuclear resonances and on the temperature of the background
material through changes in density, Doppler broadening and for small incident energies the thermal motion of the
targets and molecules (S(α, β)). Raw nuclear data has been measured and evaluated using our understanding of
nuclear physics leading to the evaluated nuclear data library (ENDL) [14, 15, 16, 17, 18, 19]. Because the particle
energy spans several orders of magnitude – for example, the neutron energy ranges from 0.001eV to 20MeV in ther-
mal nuclear reactor applications – the computing resources required for performing multi-dimensional transport
calculations with continuous or point-wise energy resolution is prohibitive for any real application. Typically, the
multigroup approximation is applied, where continuous-energy cross sections are collapsed into a selected set of en-
ergy ranges, also referred to as energy groups, using the energy spectrum as a weight function within these ranges.
The details of the group condensation are given in Appendix F. The multigroup equations are exact in the sense
that if the correct spectrum everywhere in phase space was known and used for the preparation of the cross sec-
tions, they would reproduce the exact group fluxes. However, in reality this cannot be achieved because the flux
is unknown by the time the cross sections are prepared. Instead, representative energy spectra are pre-generated
targeting certain applications, e.g. light water reactors (LWR) simulation, with some representative geometries. On
top of this, group condensation is typically entangled with the spatial homogenization, where a region in space
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gets assigned the same cross sections everywhere despite the fact that the energy spectrum varies from location to
location, in order to reduce the number of sets of multigroup cross sections and the required angular and spatial
resolutions for the transport calculation. Cross section resonance effects and homogenization equivalency need to
be carefully treated during this procedure. The application handling the cross section processing is referred to as
the lattice physics application because the geometries typically have lattice structures. Rattlesnake is a transport
solver assuming the multigroup cross sections are given. Thus, this manual will not talk about lattice physics and
assumes the multigroup cross sections appearing in the RTE are known. Rattlesnake is not ready to be used for
lattice physics calculations at this moment because of the lack of optimization for calculations with several hundred
of energy groups.

Rattlesnake is a transport solver based on the finite element method (FEM) [20, 21] discretization of the spatial inde-
pendent variables. FEM is a numerical technique for finding approximate solutions to partial differential equations
(PDE), like the transport equation, by deriving their weak or variational form. The domain is divided into elements
forming an unstructured grid and the solution is approximated by linear combinations of basis functions which
have local support on these elements. The number of basis functions is equal to the number of unknowns of the
FEM problem. The variational form of the PDE can then be converted into a system of algebraic equations that
can be solved numerically. The advantages of FEM include an accurate representation of complex geometries, the
ability to capture local effects and more. A uniform multiphysics FEM framework can facilitate the data transfer
for coupling multiple physics. Both continuous FEM (CFEM) and discontinuous FEM (DFEM) are implemented in
Rattlesnake. MOC (method of characteristics) [22], CP (collision probability) method [23], FD (finite difference) [24],
etc. are not covered by this manual.

For the angular discretization, Rattlesnake has both the discrete ordinates (SN) and the spherical harmonics ex-
pansion (PN) methods, including the diffusion approximation [3]. Fluxes along a finite set of particle directions
of motion are evaluated with SN and the angular integral appearing in the RTE is approximated using angular
quadratures with weights associated to these directions. The RTE is discretized into a coupled hyperbolic system of
equations for each multigroup equation. SN is typically more suitable for heterogeneous calculations, where higher
angular resolution is desired, than for problems with significant spatial homogenization. On the other hand, PN
expands the flux into spherical harmonics functions in angle introducing a coupled system of equations. Because
of the streaming coupling introduced by PN, calculations with high-order PN are costly, and hence PN is typically
applied to problems with significant spatial homogenization, where transport effects are limited and low-order PN
is sufficient. From a mathematical perspective, SN is a collocation method and PN is a spectral Galerkin method
for the angular discretization. The weak forms for various discretization schemes are given in this manual. Time
discretization is handled separately from other independent variables by the method of lines. Rattlesnake allows
users to apply schemes with different level of resolutions more suitable for subdomains and solve them as a whole
without iterations over the interface quantities, which is referred as multi-scheme in this manual.

Rattlesnake is built on the MOOSE framework. Rattlesnake manages meshes with libMesh [25] and solves the
system equation with PETSc [26] through MOOSE. Support of unstructured meshes, parallelization with domain
decomposition, various time integration schemes, most of nonlinear solvers features, multiphysics coupling are all
inherited from the framework. Rattlesnake is responsible for setting up the discretization of RTE with interfaces
provided by MOOSE. Because Rattlesnake is built on a general framework, it can perform calculations in 1D, 2D
and 3D unstructured meshes via MPI (message passing interface) [27] and multi-threading. The weak forms can
be directly translated into code under the MOOSE framework, which results in codes easy to maintain and extend.
Multiple developers can co-work seamlessly on Rattlesnake. This development pattern allows splitting the work
into the physics-related items residing in Rattlesnake, and physics-irrelevant items residing in the framework. The
benefit is two-fold: Rattlesnake can push the development on the framework side, which can benefit all the other
MOOSE-based applications and any improvements in MOOSE can improve Rattlesnake. For example, the common
software development procedure is managed by MOOSE, e.g. the version control, regression tests, on-line docu-
mentation. In addition, coupling Rattlesnake with other MOOSE-based applications dealing with other physics is
straight-forward because these applications are based on the same framework. As an example, the reactor physics
application MAMMOTH [2, 28] leverages components spread over Rattlesnake, MOOSE and its modules, Bison
[29, 30, 31], and Relap-7 [32]. In summary, being built on MOOSE makes Rattlesnake powerful and unique. There
indeed are constraints imposed by the framework, but this is not insurmountable and outweighted by all the ad-
vantages provided by this development pattern.

In Section 2, we first state the RTE for various particles. Currently, we only consider two particles: neutron and ther-
mal radiation but Rattlesnake can be extended easily to other types. Particles mostly share the same time derivative,
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streaming, collision, scattering, external source terms and some common types of boundary conditions. These com-
mon, physics-agnostic terms are presented first. Basics of the physics of each particle transport are given. We
introduce the vector notation for the transport equations for notation simplicity. All vector quantities and operators
in this manual are summarized in Appendix A. In Section 3, we derive the weak forms for RTE. Both weak forms
with CFEM and DFEM are presented. As a special case of PN, the weak forms for diffusion equation with CFEM
and DFEM are given. The links between the weak form and the MOOSE kernels are presented, which bridges this
manual and the documentation automatically generated from the codes. Multi-scheme transport, in particular the
interface conditions between subdomains where various discretization schemes are applied is also presented in that
section. Section 4 presents various code design aspects, including how Rattlesnake is related with MOOSE, how
Rattlesnake sets up the radiation transport system, including the weak forms, the material properties, etc. Section 5
presents the solvers for steady-state, eigenvalue and transient transport equations. Most of the solvers are imple-
mented in MOOSE, except Richardson source iteration. Additional considerations such as spherical harmonics, the
streaming operator in curvilinear coordinates, scattering phase functions, angular quadrature for SN, multigroup
approximation, black body emission, the reflection and refraction on a medium interface for thermal radiation
transport, etc. are found in from Appendix B to Appendix H. This manual represents the current implementation
of Rattlesnake and we will keep it being updated along with the code development.
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2 Multigroup Radiation Transport Equations

In the following sections, we first give a transport equation for a general type of radiation to describe the features
shared by all the transport equations. We refer to it as the common transport equation (CTE). Then we briefly
give the background of neutron transport and add the fission related terms to complete the neutron transport
equation (NTE). For radiative heat transfer or thermal radiation transport, we add the black body emission. The
radiative heat transfer equation (RHTE) is typically coupled with the thermal conduction equation, which is given
for completeness. Equations for more types of particles can be included in the future. Various types of boundary
conditions and interface conditions are given for these equations. Operator forms of this equation are given to make
the presentations shorter. The multigroup diffusion equation is an approximation of the transport equation and is
wide used due to its simplicity. It will be given at the end of each section.

2.1 Common transport equations

The transient , multigroup transport equation defined on the three-dimensional (3D) open convex spatial domain D
and on the two-dimensional (2D) unit sphere S over a one-dimensional (1D) time period [t0, t1] is

∂

∂t

(
Ψg

vg

)
+ ~Ω · ~∇Ψg + Σt,gΨg(, ~Ω) = Qext

g +
G

∑
g′=1

∫
S

Σs,g′→g fg′→g(~Ω
′ · ~Ω)Ψg′(, ~Ω

′) dΩ′ (1a)

with the boundary condition

Ψg(~x, ~Ω) = Ψinc
g (~x, ~Ω) + αs

gΨg(~x, ~Ωr) + αd
g

∫
~Ω′ ·~nb>0

∣∣∣~Ω′ ·~nb

∣∣∣Ψg(~x, ~Ω′) dΩ′∫
~Ω′ ·~nb>0

∣∣∣~Ω′ ·~nb

∣∣∣ dΩ′
, on ~x ∈ ∂D and ~Ω ·~nb < 0, (1b)

where
~Ωr = ~Ω− 2(~Ω ·~nb)~nb, (1c)

and the initial condition
Ψg(t = t0) = Ψ0

g, (1d)

for g = 1, · · · , G. All symbols appearing in Eq. (1) are listed below:

~x independent spatial variable [ cm] ,
~Ω independent angular variable for radiation flying direction,
t independent time variable [ s] ,

g index of the energy group or frequency band from 1 to G,
G number of groups or bands,

D ⊂ R3, open 3D convex spatial domain,
S angular domain of the 2D unit sphere,
t0 initial time [s] ,
t1 end time [s] ,

∂D boundary of the spatial domain D,
~nb outward unit normal vector on the boundary,

~Ωr(~nb, ~Ω) specular reflecting direction corresponding to ~Ω on the boundary,
~Ω′ secondary direction used by scattering and diffusive reflection

Ψg(~x, ~Ω, t) radiation angular flux [ cm−2 s−1 st−1] (st stands for steradian),

Qext
g (~x, ~Ω, t) external source [ cm−3 s−1 st−1],
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Ψ0
g(~x, ~Ω) initial angular flux [ cm−2 s−1 st−1],

Ψinc
g (~x, ~Ω, t) surface source on ∂D and ~Ω ·~nb < 0 [ cm−2 s−1 st−1],

vg(~x, t) group averaged radiation speed [ cm s−1],

Σt,g(~x, t) macroscopic total cross section [ cm−1],

Σs,g′→g(~x, t) macroscopic scattering cross section from group g′ to group g [ cm−1],

fg′→g(~x, t, ~Ω′ · ~Ω) ≡ 1
2π

fg′→g(~x, t, µ0), scattering phase function [ st−1],
(∫ 1

−1
fg′→g(~x, t, µ0) dµ0 = 1

)
,

αs
g(~x, ~Ω, t) specular reflectivity on the boundary,

αd
g(~x, ~Ω, t) diffusive reflectivity on the boundary.

The first term of Eq. (1a) on the left hand side is the time-derivative term. The second term is the streaming term and
the third is the collision term. The second term of Eq. (1a) on the right hand side is the scattering term, which couples
the angular fluxes of all directions and of all groups together. The G-by-G matrix formed by the scattering cross
sections is called the scattering matrix. We define the total macroscopic scattering cross section as

Σs,g ≡
G

∑
g′=1

Σs,g→g′ . (1e)

It is noted that, physically, all cross sections and vg are positive and Σs,g ≤ Σt,g. A material with Σs,g = 0, g =
1, · · · , G is called a pure absorber. A material with Σs,g = Σt,g, g = 1, · · · , G is called a pure scatterer, a material
with Σt,g = 0, g = 1, · · · , G is void. The second term of Eq. (1b) on the right hand side is the specular reflection and
the third term is the diffusive reflection. We can perform Legendre polynomial expansion of the phase function and
apply the spherical harmonics addition theorem (see Appendix B)to treat the scattering,

G

∑
g′=1

∫
S

Σs,g′→g fg′→g(~Ω
′ · ~Ω)Ψg′(~Ω

′) dΩ′ ≈
G

∑
g′=1

L

∑
`=0

2`+ 1
4π

Σg′→g
s,`

`

∑
m=−`

Φg′ ,`,mY`,m(~Ω), (1f)

where

Y`,m(~Ω) spherical harmonics, refer to Appendix B for their definitions,
L truncated scattering order,

Φg,`,m(~x, t) ≡
∫
S

Ψg(~Ω)Y`,m(~Ω) dΩ, angular flux moment of degree ` and order m[ cm−2 s−1],

Σg′→g
s,` ≡ Σs,g′→g

∫ 1

−1
fg′→g(~x, t, µ0)P`(µ0) dµ0, `-th order of scattering cross section [ cm−1].

It is noted that Φg,0,0(~x, t) is often of particular interest because most of radiation reactions are isotropic and their
rates are the product of Φg,0,0(~x, t) and the corresponding reaction cross sections. Hence, for the sake of brevity we
use Φg(~x, t) as a shorthand notation for Φg,0,0(~x, t) and refer to it as the scalar flux. The vector formed by the first
angular moments

{
Φg,1,0, Φg,1,1, Φg,1,−1

}
is also typically a quantity of interest. We give a specific notation ~Jg for

this vector and call it the current. The tensor

~~Pg ≡
1
vg

∫
S
~Ω~ΩΨg dΩ, (1g)

formed by the second order angular moments are often referred to as the radiation pressure. This name originates
from the momentum balance equation (1st moment balance equation) in radiation-hydrodynamics. The ratio of the
radiation pressure times the radiation speed to the scalar flux is referred to as the Eddington tensor

~~Eg ≡
vg
~~Pg

Φg
. (1h)

When the angular flux is linearly anisotropic, the Eddington tensor is I
3 , independent of the solution. How far away

the Eddington tensor is from this reference constant tensor can be used as a measure of the significance of local
transport effects [33].
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If we define the in-group scattering source moment as

Qg,`,m(~x, t) ≡
G

∑
g′=1

Σg′→g
s,` Φg′ ,`,m, (1i)

the scattering term can be written as

G

∑
g′=1

L

∑
`=0

2`+ 1
4π

Σg′→g
s,`

`

∑
m=−`

Φg′ ,`,mY`,m(~Ω) =
L

∑
`=0

2`+ 1
4π

`

∑
m=−`

Qg,`,mY`,m. (1j)

The external source can also be expanded in spherical harmonics as follows:

Qext
g (~x, ~Ω, t) =

Ls

∑
`=0

2`+ 1
4π

`

∑
m=−`

Qext
g,`,mY`,m, (1k)

where Ls is the truncated spherical harmonics order for expanding the external source.

Beside the multigroup approximation made in CTE for the physics of radiation transport, several additional as-
sumptions have been made:

1. external forces like gravity, electromagnetism on the radiation are neglected: change of the radiation streaming
direction due to these forces is typically negligible;

2. bulk material motion is ignored, thereby assuming the medium is stationary or its velocity is significantly
smaller than the radiation velocity;

3. the media are assumed to be isotropic, meaning that the velocity and the total, scattering cross sections have
no angular dependency and the phase function depends only on the angle suspended by the incoming and
out-going directions;

4. the angular fluxes across medium interfaces are continuous along their streaming direction. This could be
invalid in some circumstances such as visible light crossing the interface of two media with different refractive
index;

5. radiation-radiation interaction is neglected, thereby assuming the radiation density is so low that the chance
for a radiation to interact with another is much smaller than interacting with background media.

Spatial symmetries allow the problem to be represented in an angular space of reduced size. In 2D, we only need
to solve the equation over the half sphere ~Ω ∈ S , ~Ω ·~ez > 0 due to the symmetry with respect to the 2D x-y spatial
plane. Thus we can align the polar direction of the angular coordinate with ~ex, so that the angular flux moments
with m < 0 are equal to zero. Consequently, the index m in Eq. (1j) only ranges from 0 to ` instead of from −` to
` in 3D. Then, Φg,1,0 is the current in the x-direction and Φg,1,1 in the y-direction. We also scale the external source
and the scattering source by a factor two, so that the angular flux is doubled and its moments (and reaction rates)
remain unchanged whenever the angular integration is done on the half sphere. This factor two is often reflected
in the spherical harmonics normalization factor 2`+1

4π in Eq. (1j). If the external source is expanded with spherical
harmonics, that same scaling is automatically applied to it. It also need be applied on the boundary source Ψinc

g . In
1D, we redefine the angular domain as µ ∈ [−1, 1] and align the polar direction of the angular coordinate with~ex,
so that the solution only depends on µ and the angular flux moments with m 6= 0 are then equal to zero. The index
m is thus dropped in 1D. The external source and the scattering source are then scaled by a factor 2π, so that the
angular flux will be scaled by 2π and the angular flux moments remain unchanged. The same factor needs to be
applied to the surface sources as in 2D. The streaming term ~Ω ·Ψg can be simplified in both 2D and 1D by dropping
those zero spatial components due to the symmetry. The special treatment of the phase function in 2D and 1D will
be detailed in Appendix D.

Writing the transport equation in operator form makes the notation and all subsequent derivations much cleaner.
We therefore define

Ψ ≡


Ψ1
Ψ2
...

ΨG

 ,
Ψ

v
≡


Ψ1
v1
Ψ2
v2
...

ΨG
vG

 , Qext ≡


Qext

1
Qext

2
...

Qext
G

 ,
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over D × S × [t0, t1], henceforth referred to as the phase space. We also define the operators mapping a function in
the phase space to another function in the same phase space

LΨ ≡


~∇ · ~ΩΨ1 + Σt,1Ψ1
~∇ · ~ΩΨ2 + Σt,2Ψ2

...
~∇ · ~ΩΨG + Σt,GΨG

 ,SΨ ≡


∑G

g′=1
∫
S Σs,g′→1 fg′→1Ψg′(~Ω′) dΩ′

∑G
g′=1

∫
S Σs,g′→2 fg′→2Ψg′(~Ω′) dΩ′

...
∑G

g′=1
∫
S Σs,g′→G fg′→GΨg′(~Ω′) dΩ′

 , (2)

where L is the streaming-collision operator; S is the scattering operator. Note that we intentionally wrote ~∇ · ~ΩΨg
which is true in both Cartesian and curvilinear coordinate system; in Cartesian coordinates systems the derivative
of ~Ω with respect to space is zero and hence we obtain ~∇ · ~ΩΨg = ~Ω · ~∇Ψg. We further define the operator for the
homogeneous part of the boundary condition mapping from ∂D × S+~nb

× [t0, t1] to ∂D × S−~nb
× [t0, t1]

BΨ ≡



αs
1Ψ1(~Ωr) + αd

1

∫
~Ω′ ·~nb>0|~Ω′ ·~nb|Ψ1(~Ω′) dΩ′∫

~Ω′ ·~nb>0|~Ω′ ·~nb| dΩ′

αs
2Ψ2(~Ωr) + αd

2

∫
~Ω′ ·~nb>0|~Ω′ ·~nb|Ψ2(~Ω′) dΩ′∫

~Ω′ ·~nb>0|~Ω′ ·~nb| dΩ′

...

αs
GΨG(~Ωr) + αd

G

∫
~Ω′ ·~nb>0|~Ω′ ·~nb|ΨG(~Ω′) dΩ′∫

~Ω′ ·~nb>0|~Ω′ ·~nb| dΩ′


where S±~v =

{
~Ω ∈ S , ~Ω ·~v ≷ 0

}
stands for the half angular space defined with respect to a unit vector ~v. We can

think of 1
v as an operator, although here we adopt the notation of the multiplication of two same sized vectors. It is

noted that all of these operators L, S and B have no time derivative terms, so they are also valid operators on D×S
or ∂D × S+~nb

. We also define the surface source on ∂D × S−~nb
× [t0, t1]

Ψinc ≡


Ψinc

1
Ψinc

2
...

Ψinc
G

 ,

and the initial solution on D × S

Ψ0 ≡


Ψ0

1
Ψ0

2
...

Ψ0
G

 .

Finally Eq. (1) becomes
∂

∂t

(
Ψ

v

)
+ LΨ = Qext + SΨ, (3a)

with the boundary condition on ∂D × S−~nb
× [t0, t1]

Ψ = Ψinc + BΨ, (3b)

and the initial condition
Ψ|t=t0

= Ψ0. (3c)

’-’ superscript is used to denote the incoming angular fluxes on the boundary.

With this operator notation, the steady-state CTE can be written as

LΨ = Qext + SΨ, (4a)

with the boundary condition on ∂D × S−~nb

Ψ = Ψinc + BΨ. (4b)

13



2.1 Common transport equations Rattlesnake Theory Manual

It is noted that the time dependence is dropped whenever possible and the operators L, S and B are re-interpreted
as acting on time-independent functions.

The adjoint equation can be derived through the variational form of CTE. We first define the following inner products

(a, b) ≡
G

∑
g=1

∫ t1

t0

dt
∫
S

dΩ
∫
D

dx ag(~x, ~Ω, t)bg(~x, ~Ω, t), (5a)

(a, b)|t=t′ ≡
G

∑
g=1

∫
S

dΩ
∫
D

dx ag(~x, ~Ω, t = t′)bg(~x, ~Ω, t = t′), (5b)

〈a, b〉± ≡
G

∑
g=1

∫ t1

t0

dt
∫

∂D
dx
∫
S±~nb

dΩ
∣∣∣~Ω ·~nb

∣∣∣ ag(~x, ~Ω, t)bg(~x, ~Ω, t), (5c)

where a and b stand for two arbitrary functions defined on the phase space. Then, we define the functional G:

G(Ψ∗, Ψ) ≡
(

Ψ∗,
∂

∂t

(
Ψ

v

))
+

(
Ψ∗

v
, Ψ

)∣∣∣∣
t=t0

−
(

Ψ∗

v
, Ψ0

)∣∣∣∣
t=t0

−
(

Ψ∗1 ,
Ψ

v

)∣∣∣∣
t=t1

+ (Ψ∗,LΨ) + 〈Ψ∗, Ψ〉− − 〈Ψ∗,BΨ〉− −
〈

Ψ∗, Ψinc
b

〉−
−
〈
Ψ∗out

b , Ψ
〉+

− (Ψ∗,SΨ)−
(
Ψ∗, Qext)− (Q∗ext, Ψ

)
, (6)

where

Ψ∗ =


Ψ∗1
Ψ∗2
...

Ψ∗G

 ; Q∗ext =


Q∗ext

1
Q∗ext

2
...

Q∗ext
G

 ,

are the adjoint and the adjoint external source defined on the phase space and

Ψ∗1 =


Ψ∗11
Ψ∗12

...
Ψ∗1G

 ; Ψ∗out =


Ψ∗out

1
Ψ∗out

2
...

Ψ∗out
G

 ,

are the final adjoint conditions at t = t1 and the boundary out-flow angular fluxes. We can see that the solution
of Eq. (1) is the stationary point of this functional because it is the corresponding Euler-Lagrange equation. We
will now derive the adjoint equations as stationary point of the functional G with respect to variations in Ψ. Using
integration by parts it is easy to show that(

Ψ∗,
∂

∂t

(
Ψ

v

))
+

(
Ψ∗

v
, Ψ

)∣∣∣∣
t=t0

=−
(

1
v

∂

∂t
Ψ∗, Ψ

)
+

(
Ψ∗,

Ψ

v

)∣∣∣∣
t=t1

, (7)

(Ψ∗,LΨ) + 〈Ψ∗, Ψ〉− = (L∗Ψ∗, Ψ) + 〈Ψ∗, Ψ〉+ , (8)

where we defined

L∗Ψ ≡



(
−~Ω · ~∇+ Σt,1

)
Ψ1(

−~Ω · ~∇+ Σt,2

)
Ψ2

...(
−~Ω · ~∇+ Σt,G

)
ΨG

 .

Similarly, using integration by parts on the scattering term reveals that

(Ψ∗,SΨ) = (S∗Ψ∗, Ψ) , (9)
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where

S∗Ψ ≡


∑G

g′=1
∫
S Σs,1→g′ f1→g′Ψg′(~Ω′) dΩ′

∑G
g′=1

∫
S Σs,2→g′ f2→g′Ψg′(~Ω′) dΩ′

...
∑G

g′=1
∫
S Σs,G→g′ fG→g′Ψg′(~Ω′) dΩ′

 ,

and finally the reflecting boundary terms satisfies

〈Ψ∗,BΨ〉− = 〈B∗Ψ∗, Ψ〉+ (10)

where

B∗Ψ ≡



αs
1Ψ1(~Ωr) + αd

1

∫
~Ω′ ·~nb<0|~Ω′ ·~nb|Ψ1(~Ω′) dΩ′∫

~Ω′ ·~nb<0|~Ω′ ·~nb| dΩ′

αs
2Ψ2(~Ωr) + αd

2

∫
~Ω′ ·~nb<0|~Ω′ ·~nb|Ψ2(~Ω′) dΩ′∫

~Ω′ ·~nb<0|~Ω′ ·~nb| dΩ′

...

αs
GΨG(~Ωr) + αd

G

∫
~Ω′ ·~nb<0|~Ω′ ·~nb|ΨG(~Ω′) dΩ′∫

~Ω′ ·~nb<0|~Ω′ ·~nb| dΩ′


.

The adjoint equation can now be obtained as the Euler-Lagrange equation of the transformed functional G with the
variation of Ψ:

− 1
v

∂

∂t
Ψ∗ + L∗Ψ∗ = Q∗ext + S∗Ψ∗, (11a)

along with the boundary condition on ∂D × S+~nb
× [t0, t1]

Ψ∗ = Ψ∗out + B∗Ψ∗, (11b)

and the final condition
Ψ∗|t=t1

= Ψ∗1. (11c)

Solution of the adjoint equation is also the stationary point of the variational of Eq. (6). It is typical to redefine the
adjoint angular flux Ψ∗(~Ω) ← Ψ∗(−~Ω). Then the adjoint equation can be solved by simply solving the forward
equation with the scattering matrix being transposed, a factor (−1) being applied to the odd spherical harmonics
and the direction of time being inverted, i.e. the problem is solved starting at final times and ending at the initial
time. The solution obtained with the discretization applied to the adjoint equation is called the physical adjoint.

If we integrate Eq. (3) over the 2D unit sphere S , we obtain the balance equation

∂

∂t

(
Φ

v

)
+ ~∇ ·~J + L2Φ = Qext

0 + S0Φ, (12)

where

Φ ≡


Φ1
Φ2
...

ΦG

 ,
Φ

v
≡


Φ1
v1
Φ2
v2
...

ΦG
vG

 ,~J ≡


~J1
~J2
...
~JG

 , Qext
0 ≡


∫
S Qext

1 dΩ∫
S Qext

2 dΩ
...∫

S Qext
G dΩ

 ,

and

L2Φ ≡


Σt,1Φ1
Σt,2Φ2

...
Σt,GΦG

 ,S0Φ ≡


∑G

g′=1 Σs,g′→1Φg′

∑G
g′=1 Σs,g′→2Φg′

...
∑G

g′=1 Σs,g′→GΦg′

 .

It is noted that we use the subscript 0 to indicate the isotropic part of the external source and the zeroth moment
of the scattering operator. It is common to merge the ingroup scattering into the total collision by defining the
macroscopic removal cross sections

Σr,g ≡ Σt,g − Σs,g→g, g = 1, · · · , G, (13)
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and the two operators

L3Φ ≡


Σr,1Φ1
Σr,2Φ2

...
Σr,GΦG

 ,SdΦ ≡


∑g′ 6=1 Σs,g′→1Φg′

∑g′ 6=2 Σs,g′→2Φg′
...

∑g′ 6=G Σs,g′→GΦg′

 ,

the balance equation becomes
∂

∂t

(
Φ

v

)
+ ~∇ ·~J + L3Φ = Qext

0 + SdΦ. (14)

If we multiply Eq. (3b) with
∣∣∣~Ω ·~nb

∣∣∣ and integrate over S−~nb
, we obtain the boundary condition for the balance

equation,
Ji = Jinc + αJo, (15)

where

Ji ≡



∫
|~Ω·~nb|<0

∣∣∣~Ω ·~nb

∣∣∣Ψ1 dΩ∫
|~Ω·~nb|<0

∣∣∣~Ω ·~nb

∣∣∣Ψ2 dΩ
...∫

|~Ω·~nb|<0

∣∣∣~Ω ·~nb

∣∣∣ΨG dΩ

 , Jo ≡



∫
|~Ω·~nb|>0

∣∣∣~Ω ·~nb

∣∣∣Ψ1 dΩ∫
|~Ω·~nb|>0

∣∣∣~Ω ·~nb

∣∣∣Ψ2 dΩ
...∫

|~Ω·~nb|>0

∣∣∣~Ω ·~nb

∣∣∣ΨG dΩ

 , Jinc ≡


Jinc
1

Jinc
2
...

Jinc
G

 ,

and

α ≡


αs

1 + αd
1

αs
2 + αd

2
...

αs
G + αd

G

 .

The incoming boundary partial current is defined as:

Jinc
g =

∫
|~Ω·~nb|<0

∣∣∣~Ω ·~nb

∣∣∣Ψinc
g dΩ (16)

This is also known as the albedo boundary condition. We use superscript ’o’ and ’i’ to denote the out-going and
incoming partial currents with respect to the solution domain. When α = I, the condition is

−~J ·~nb = Jinc, (17)

where~J ·~nb is the net out-going current and equal to Jo − Ji.

If we multiply Eq. (3) with ~Ω and integrate over the 2D unit sphere S , we obtain the set of momentum equations or
the first moment equations

∂

∂t

(
~J
v

)
+ ~∇ · (~~EΦ) + L2~J = ~Qext

1 + S1~J, (18)

where

~~E ≡


~~E1
~~E2
...
~~EG

 ,S1~J ≡


∑G

g′=1 Σs,g′→1,1~Jg′

∑G
g′=1 Σs,g′→2,1~Jg′

...
∑G

g′=1 Σs,g′→G,1~Jg′

 .

If we assume that the angular flux varies only linearly with angle we know that ~~E =
~~I
3 . If we additionally neglect

the time derivative term of the currents, the first angular moments of the external source and the off-group linearly
anisotropic scattering terms, we obtain

~J = −L−1
tr

~∇Φ, (19)
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where we defined

Σtr,g ≡ Σt,g − Σs,g→g,1, g = 1, · · · , G, (20)

and the operator

Ltr~J ≡


Σtr,1~J1
Σtr,2~J2

...
Σtr,G~JG

 .

Eq. (19) is a relationship between the current and the gradient of the scalar fluxes and it provides a way of obtaining
the diffusion coefficient in Fick’s law.

2.2 Common diffusion equation

The common diffusion equation (CDE) can be derived from the CTE with a P0 projection or asymptotic analysis. If
Fick’s law

~Jg = Dg~∇Φg, g = 1, · · · , G (21)

is valid for evaluating the current, we can get the CDE from the balance equation. The transient CDE on the 3D
open convex spatial domain D within the 1D time period [t0, t1] is

∂

∂t

(
Φg

vg

)
− ~∇ ·Dg~∇Φg + Σr,gΦg = Qext

g,0 + ∑
g′ 6=g

Σs,g′→gΦg′ , (22a)

with the Dirichlet boundary condition
Φg = Φb,g,~x ∈ ∂D1, (22b)

the Neumann boundary condition
Dg~∇Φg ·~nb = Jnet

b,g ,~x ∈ ∂D2, (22c)

and the Robin boundary condition

Φg

4
+

eg

2
Dg~∇Φg ·~nb = Jinc

b,g ,~x ∈ ∂D3, (22d)

where ∂D = ∂D1 ∪ ∂D2 ∪ ∂D3, and the initial condition

Φg(t = t0) = Φ0
g, (22e)

for g = 1, · · · , G. All the symbols in Eq. (22) that were not already defined in Eq. (1) are listed below:

∂D1 Dirichlet boundary,
∂D2 Neumann boundary,
∂D3 Robin boundary,

Φg,(~x, t) scalar flux [ cm−2 s−1],

Dg(~x, t) diffusion coefficient [ cm],

Qext
g,0(~x, t) ≡

∫
S

Qext
g dΩ, isotropic external source [ cm−3 s−1],

Φ0
g(~x) initial scalar flux [ cm−2 s−1],

Φb,g(~x, t) scalar flux on Dirichlet boundary [ cm−2 s−1],

Jnet
b,g (~x, t) net incoming current on Neumann boundary [ cm−2 s−1],

Jinc
b,g(~x, t) partial incoming partial current on Robin boundary [ cm−2 s−1],

Σr,g(~x, t) ≡ Σt,g − Σs,g→g, macroscopic removal cross section [ cm−1],
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eg(~x, t) a factor used to have the diffusion solution better match the transport solution.

The first term of Eq. (22a) on the left hand side is the time-derivative term. The second term is the diffusion term and
the third is the removal term. The second term on the right hand side is the scattering term, which couples the scalar
fluxes of all groups together. We can define the in-group scattering source as

Qg(~x, t) ≡ ∑
g′ 6=g

Σs,g′→gΦg′ , (23)

which is different from the transport inscattering source Qg,0,0 in that Σs,g→gΦg is not included. Because the CTE
does not have any angular dependency, the 3D CDE notation also applies to 2D and 1D. The steady-state equation
can be obtained by simply dropping the time-derivative term, the initial condition and the time dependencies of
all material properties and variables. With a derivation similar to that described above for the CTE, we obtain the
following CDE adjoint equation,

− 1
vg

∂

∂t
Φ∗g − ~∇ ·Dg~∇Φ∗g + Σr,gΦ∗g = Q∗ext

g,0 + ∑
g′ 6=g

Σs,g→g′Φ
∗
g′ , (24a)

with the Dirichlet boundary condition
Φ∗g = Φ∗b,g,~x ∈ ∂D1, (24b)

the Neumann boundary condition
Dg~∇Φ∗g ·~nb = Jnet∗

b,g ,~x ∈ ∂D2, (24c)

the Robin boundary condition
Φ∗g
4

+
eg

2
Dg~∇Φ∗g ·~nb = J∗inc

b,g ,~x ∈ ∂D3, (24d)

and the final condition
Φ∗g(t = t1) = Φ∗1g , (24e)

for g = 1, · · · , G. The Robin boundary condition is the analog of the surface source boundary condition in the CTE.
The homogeneous Neumann boundary condition can be derived from the reflecting boundary condition. If we
assume the angular flux can be expanded as

Ψg =
1

4π
Φg −

3
4π

Dg~∇Φg · ~Ω, (25)

we can substitute it into∫
~Ω·~nb<0

Ψg

∣∣∣~Ω ·~nb

∣∣∣ dΩ =
∫
~Ω·~nb<0

Ψinc
g

∣∣∣~Ω ·~nb

∣∣∣ dΩ+

αs
g

∫
~Ω·~nb<0

Ψg(~Ωr)
∣∣∣~Ω ·~nb

∣∣∣ dΩ+

αd
g

∫
~Ω·~nb<0

∫
~Ω′ ·~nb>0

∣∣∣~Ω′ ·~nb

∣∣∣Ψg(~x, ~Ω′) dΩ′∫
~Ω′ ·~nb>0

∣∣∣~Ω′ ·~nb

∣∣∣ dΩ′

∣∣∣~Ω ·~nb

∣∣∣ dΩ

to obtain

1
4

Φg +
1
2

Dg~∇Φ ·~nb =Jinc
g +

(
αs

g + αd
g

)(1
4

Φg −
1
2

Dg~∇Φg ·~nb

)
.

If the reflectivity αs
g + αd

g is zero, we retrieve the Robin boundary condition with the factor eg being equal to 1. If the
reflectivity αs

g + αd
g is 1, we retrieve the Neumann boundary condition. Asymptotic analysis for the diffusion limit

of the transport equation with isotropic scattering gives the following boundary condition when the reflectivity is
zero:

1
4

Φg +
3z0

2
1
2

Dg~∇Φg ·~nb =
∫
~Ω·~nb<0

1
2

W(
∣∣∣~Ω ·~nb

∣∣∣)Ψinc
g dΩ, (26)
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where

z0 ≡
∫ 1

0
W(µ)µ dµ ≈ 0.710446,

W(µ) ≡
√

3
2

µHc=1(µ),

Hc=1(µ) Chandrasekhar’s H-function for a c = 1 isotropic scattering medium [34],

Dg ≡ 1
3Σt,g

, asymptotic diffusion coefficient with isotropic scattering.

If Ψinc
g is isotropic, because

∫
~Ω·~nb<0

1
2 W(

∣∣∣~Ω ·~nb

∣∣∣) dΩ = π, we see that
∫
~Ω·~nb<0

1
2 W(

∣∣∣~Ω ·~nb

∣∣∣)Ψinc
g dΩ = Jinc

g . Eq. (26)
gives a better equivalent incoming partial current for the diffusion equation when the surface source is anisotropic.
It also explains why we keep the eg factor, which is often understood as the extrapolation factor. Extension of
asymptotic analysis for anisotropic scattering with boundary reflection is possible but not pursued in this manual.
The Dirichlet boundary condition is valid only for the diffusion equation and does not have a correspondence in
the transport equation.

If we define the operator

D~J ≡


D1~J1
D2~J2

...
DG~JG

 ,

the CDE in operator form is the balance equation with ~∇ ·~J being replaced with −~∇ ·D~∇Φ:

∂

∂t

(
Φ

v

)
− ~∇ ·D~∇Φ + L3Φ = Qext

0 + SdΦ, (27a)

with the boundary condition

Φ = Φb, ~x ∈ ∂D1, (27b)

−D~∇Φ ·~nb = −Jnet, ~x ∈ ∂D2, (27c)

−D~∇Φ ·~nb =
1
2

eΦ− 2eJinc, ~x ∈ ∂D3, (27d)

where

e ≡


1
e1
1
e2
...
1

eG

 ,

and the initial condition
Φ(t = t0) = Φ0. (27e)

Similarly we can write down the operator form of the adjoint CDE:

− 1
v

∂

∂t
Φ∗ − ~∇ ·D~∇Φ∗ + L3Φ∗ = Qext∗

0 + S∗dΦ∗, (28a)

where

Φ∗ ≡


Φ∗1
Φ∗2

...
Φ∗G

 ,S∗dΦ∗ ≡


∑g′ 6=1 Σs,1→g′Φ∗g′
∑g′ 6=2 Σs,2→g′Φ∗g′

...
∑g′ 6=G Σs,G→g′Φ∗g′

 ,

with the boundary condition

Φ∗ = Φ∗b, ~x ∈ ∂D1, (28b)
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−D~∇Φ∗ ·~nb = −Jnet∗, ~x ∈ ∂D2, (28c)

−D~∇Φ∗ ·~nb =
1
2

eΦ∗ − 2eJinc∗, ~x ∈ ∂D3, (28d)

and the final condition
Φ∗(t = t1) = Φ∗1. (28e)

The diffusion coefficient is typically a scalar value based on the P0 projection or asymptotic analysis. But in general
it can be a tensor. For instance, we can have a tensor diffusion coefficient evaluated from the transport angular
fluxes so that the CDE can reproduce the scalar fluxes of the CTE:

Du,v,g =


∫

4π ∂uΨg dΩ∫
4π ΩuΨg dΩ , u=v and

∫
4π ΩuΨg dΩ 6= 0;

min
(

1
Σt,g−Σs,g→g

, D0

)
u=v and

∫
4π ΩuΨg dΩ = 0;

0, u 6=v;

, (29)

where D0 is a threshold to ensure the value is not infinity in void. Theoretically speaking, there exists a tensor
diffusion coefficient which can let the diffusion scalar flux match the transport scalar flux.

The standard derivation of the diffusion approximation takes the 0th and 1st angular moment of the transport
equation and then proceeds to derive Fick’s law by assuming that the flux varies at most linearly in angle (this
assumption is incorporated in Eq. (25)) and that the time derivative in the 1st angular moment equation can be
neglected. Applying these approximations leads to the following 1st moment equation:

1
3
~∇Φg + Σt,g~Jg =

G

∑
g′=1

Σg′→g
s,1

~Jg′ . (30)

Without additional approximation, it is impossible to define a scalar diffusion coefficient fitting the definition
of Eq. (21) from Eq. (30). Therefore, another approximation is introduced that we refer to as the transport ap-
proximation:

G

∑
g′=1

Σg′→g
s,1

~Jg′ =
G

∑
g′=1

Σg→g′
s,1

~Jg (31)

Using Eq. (31) results in the well-known definition of the diffusion coefficient:

Dg =
1

3

(
Σt,g −

G
∑

g′=1
Σg→g′

s,1

) (32)

Within the Rattlesnake code, this definition of the diffusion coefficient is referred to as the local diffusion coefficient
as it can be directly computed from the local cross sections. The local diffusion coefficient is incompatible with
voids.

The non-local diffusion theory was developed by Morel and Larsen in [35] and [36], respectively, with a recent
extension to include anisotropic scattering in [37]. This section will briefly review the relevant points, but the
reader is encouraged to consult the references for a more detailed description. The difference in the derivation of
non-local diffusion theory and standard diffusion theory is that we assume the following:

• The scalar flux is of order one: Φg = O(1),

• Weak spatial derivatives: ~∇Ψg = O(ε),

• Small currents: ~Jg = O(ε),

where ε is a small parameter typically used in asymptotic diffusion analysis. Instead of deriving Fick’s law from the
1st angular moment equation, it is derived from formally inverting the streaming and collision operator onto the
right hand side of the transport equation featuring linearly anisotropic scattering, and then deriving an equation for
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the current by multiplication with ~Ω and integration over the unit sphere. Application of the stated assumptions
leads to a tensor diffusion coefficient defined by:

~~Dg =
(
~~I − ~~Mg,1

)−1 ~~Mg,0, (33a)

where
~~Mg,` =

1
4π

∫
S
~Ω~ΩFg,`(~x, ~Ω) dΩ, for ` = 0, 1. (33b)

The auxiliary fluxes Fg,l(~x, ~Ω) are the solutions of the following auxiliary problems:

~Ω · ~∇Fg,0 + Σt,g(~x)Fg,0(~x, ~Ω) = 1, ~x ∈ D
~Ω · ~∇Fg,1 + Σt,g(~x)Fg,1(~x, ~Ω) = 3Σg

s,1, ~x ∈ D

Fg,0 = Fg,1 = 0, ~x ∈ ∂Dv and ~Ω ·~nb < 0

Fg,0(~x, ~Ω) = Fg,0(~x, ~Ωr), Fg,1(~x, ~Ω) = Fg,1(~x, ~Ωr), ~x ∈ ∂Dr and ~Ω ·~nb < 0, (33c)

where the final equations are identical to the ones found in [37] with the exception of the Fg,1 equation that has
been extended to multigroup by using the transport approximation Eq. (31). The question of the correct boundary
conditions has not been answered conclusively. First, it should be mentioned that the vacuum and reflective pieces
of the boundary ∂Dv and ∂Dr, respectively, need to coincide with the respective fractions in the original transport
problem. Trahan and Larsen, [36], suggested imposing reflective boundary conditions everywhere because it would
simplify the diffusion tensor to the standard 1/3Σt in case of an infinite homogeneous medium. Later Larsen
showed that vacuum boundary conditions should be applied everywhere[37]. Finally, without solid mathematical
backing, natural boundary conditions where ∂Dv and ∂Dr coincide with their respective counterparts of the original
transport problem could be used. The main importance of non-local diffusion theory is that it is well defined in
voids. Moreover it does not assume at most linear variation of the angular flux with direction, but allows deviations
from it inside a small cone as long as these deviations do not affect the overall scalar flux too much [37]. The
best diffusion coefficient for compensating transport effects in realistic simulations without resorting the transport
solution is still an open research area. Evaluating diffusion coefficient with Monte Carlo method is also an active
research area.

2.3 Neutron

2.3.1 Physics of neutron transport

Neutron transport is one of the most important physics occurring in nuclear reactors. Neutrons are born from
fission reactions or from spontaneous fission events of some heavy actinides; due to the nature of the reactions
creating neutrons energies above 20MeV are rare. Since the temperature of nuclear reactor components are close
to or above the ambient temperature (20.46◦C, where nuclear data are measured and evaluated), corresponding to
0.025301eV, free neutrons with energies below 0.001eV are also rare. Neutrons in fast reactors have a higher chance
to be absorbed or leak out of the reactor due to insufficient moderating before reaching the thermal range than in
thermal reactors. The energy range of importance for neutron transport is typically between 0.001eV and 20MeV.
This range may vary slightly depending on the multigroup libraries generated by different organizations or on the
reactor type. Traditionally, we order groups from fast to thermal with descending energy. The upper bound of
the 1-st energy group for neutron transport is thus equal to the highest energy of the library, e.g. 20MeV, and the
lower bound of the G-th energy group is the lowest energy of the library, e.g. 0.001eV for most thermal reactor
applications. The number of energy groups G can range from 2 to a few hundred depending on the application.
Rattlesnake is currently not designed for energy groups notably larger than 50.

In the neutron transport equation (NTE), the physical meaning of the flux Ψg(~x, ~Ω, t) dx dΩ = vgNg(~x, ~Ω, t) dx dΩ
is the expected number of neutrons in dx about ~x, with directions of motion within dΩ about the direction ~Ω at
time t in the g-th energy group (Ng) times the averaged neutron speed in the group (vg). Neutron transport is a
special case of radiation transport with the following properties:

1. neutrons of all energies can cause fission of heavy nuclei; fission reactions can promptly emit more than one
neutron per event.
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2. fission fragments usually have a surplus of neutrons and some of them (delayed neutron precursors (DNP))
emit delayed neutrons when decaying. DNP are lumped based on and their decay constants into several
groups from 1 to about 8 for different applications.

3. neutrons usually lose energy in scattering events (slowing-down).

4. neutrons can gain energy from scattering with nuclei in thermal motion. Such "upscattering" events are signifi-
cant for incident neutron energies up to about Ec = 10kT. This cut-off energy Ec is 0.43eV with the temperature
T equal to 500K (k being the Boltzmann constant).

5. high-energy neutrons can interact with nuclei in non-fission reactions and cause more than one neutron with
lower energies to be emitted; these reactions are referred to as (n, xn) reactions.

6. non-neutron particles could be emitted after neutron absorption, including photons, protons, etc.

7. free neutrons decay with a half life of roughly ten minutes. However, because the averaged neutron life time is
much smaller than the neutron mean generation time (∼ 10−6− 10−4 sec), this phenomenon can be neglected
in most reactor applications.

The first two items of this list describe the extra terms in the NTE. An equation for delayed neutron precursors
(DNP) need be taken into account for transient simulations. The third and fourth items lead to the following
structure of the scattering matrix: Typically we set another energy boundary above the thermal cut-off Ec around

in-group scattering

down-scattering up-scattering

g'=1

g=1
g'=G

g=G

thermal cut-off

0

Figure 1 Pattern of neutron scattering matrix.

18eV to ensure that no neutrons are non-physically up-scattered into the resonance energy regions. The physics
of neutron slowing down and thermalization in relation with the generation of multigroup cross sections are not
considered in this manual. The 5-th item is typically treated with changing the microscopic scattering cross section
as

σs =
X

∑
x=1

xσn,xn, (34)

where x is the number of emitted neutrons and X is the maximum number of neutrons that can be emitted. Typically
X is set to 3. This change on the scattering cross sections could result into situations where macroscopic scattering
cross sections in the high-energy range are larger than the macroscopic total cross sections, i.e. Σs,g > Σt,g. Be-
cause of this, we cannot evaluate the absorption reaction rates by subtracting the scattering rates from the total
rates. Absorption cross sections need to be provided if the corresponding rates are desired. It is noted that this
treatment seldom creates numerical issues because the neutron energy quickly drops below the threshold for this
multiple-neutron-emission reaction. All the secondary particles other than neutrons are not considered in the NTE
and lumped into the absorption event. Cross sections for these reactions are needed for coupled radiation transport
simulations such as the neutron-photon coupled simulations, where neutron absorption may induce photon pro-
duction and vice versa. The assumption of isotropic media is considered sufficiently accurate for neutron transport
in nuclear reactor analysis. Neutron angular fluxes are continuous across the medium interface along the streaming
direction. This interface condition is implicitly assumed.
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Neutron transport is coupled with other physics in reality. Background media temperature can change the neutron
cross sections with the Doppler effect. Resonances are broadened and cross sections in thermal range are increased
when temperature is increased due to the effect. Neutron cross sections are also proportional to the atomic densities
of composing nuclides. Thus thermal expansion of solid or density change in fluid affects the possibility of neutron
interacting with materials. Lower cross sections also typically mean more leakage of neutron out of the system.
Rattlesnake can set up the transport system on a displaced mesh to bring in the thermal expansion effect of solid.
It can obtain the density and temperature variables from other physics to interpolate the pre-generated multigroup
cross sections. Neutron fission, scattering, absorption reactions can promptly deposit thermal energies locally or
create compound nuclides, which release radiations through decay. We define prompt energy deposition by neutron
with a special energy-deposition cross section Σe in unit of J/cm. It is noted that the kinetic energy of fission fragments
in a fission event is considered part of this energy on engineering scale because the flying distance of fragments is
in micrometers. Because of this, Σe is sometimes referred as κΣf, where κ is energy deposition per fission. Neutron
reactions can produce promptly photon as well, which is used as source of the photon transport equation. If photon
transport is neglected, we typically assume all energy carried by photon is deposited immediately and locally. We
can similarly assume energy carried by electron is deposited immediately and locally. Interaction of neutrons with
lattices gives rise to defects/imperfections such as vacancies, self-interstitials, ionization and electron excitation etc.
The microscopic defects produced in materials due to irradiation, including neutron, are referred to as radiation
damage and are typically measured with also cross sections. Radiation damage is important to the nuclear fuel
performance modeling at meso-scale.

2.3.2 Neutron transport equation

In summary, the NTE is obtained by adding the following to the right hand-side

1
4π

(1− β) χp,g

G

∑
g′=1

νΣf,g′Φg′ +
1

4π

I

∑
i=1

χd,i,gλiCi, (35)

where

I number of groups of DNP,

Ci(~x, t) concentration of delayed neutron precursor [cm−3],
βi(~x, t) delayed neutron fraction,

β(~x, t) ≡
I

∑
i=1

βi, total delayed neutron fraction,

λi DNP decay constant [s−1],
χp,g(~x, t) prompt fission spectrum,

χd,i,g(~x, t) delayed fission spectrum,

Σf,g(~x, t) macroscopic fission cross section [ cm−1],

ν averaged neutron emitted per fission,

and the DNP equations read
∂

∂t
Ci = βi

G

∑
g′=1

νΣf,g′Φg′ − λiCi, i = 1, · · · , I. (36)

It is noted that we assume that DNPs are deposited locally and never diffuse or are convected away after their
generation from fission. Prompt and delayed fission neutrons are both emitted isotropically. We also assume the
prompt fission spectrum is independent of the energy of the neutron causing the fission, i.e. it has no dependency
on g′. This assumption allows us to define the fission source as

F ≡
G

∑
g′=1

νΣf,g′Φg′ . (37)
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If we define the averaged fission spectrum

χg ≡ (1− β) χp,g +
I

∑
i=1

βiχd,i,g, (38)

we observe that as soon as the DNPs reach the equilibrium state, i.e.

Ci =
βi
λi

F, i = 1, · · · , I, (39)

Eq. (35) can be simplified to 1
4π χgF.

If we define the following vector notation for the DNPs

C ≡


C1
C2
...

CI

 ,

and the fission operators as

FpΨ ≡ 1
4π

Fp,0Φ ≡


1

4π (1− β) χp,1 ∑G
g′=1 νΣf,g′Φg′

1
4π (1− β) χp,2 ∑G

g′=1 νΣf,g′Φg′

...
1

4π (1− β) χp,G ∑G
g′=1 νΣf,g′Φg′

 ,

FdΨ ≡ 1
4π

Fd,0Φ ≡


1

4π ∑I
i=1 βiχd,i,1 ∑G

g′=1 νΣf,g′Φg′
1

4π ∑I
i=1 βiχd,i,2 ∑G

g′=1 νΣf,g′Φg′

...
1

4π ∑I
i=1 βiχd,i,G ∑G

g′=1 νΣf,g′Φg′

 ,

FΨ ≡ 1
4π

F0Φ ≡


1

4π χ1 ∑G
g′=1 νΣf,g′Φg′

1
4π χ2 ∑G

g′=1 νΣf,g′Φg′

...
1

4π χG ∑G
g′=1 νΣf,g′Φg′

 ,

CC ≡ 1
4π

C0C ≡


1

4π ∑I
i=1 χd,i,1λiCi

1
4π ∑I

i=1 χd,i,2λiCi
...

1
4π ∑I

i=1 χd,i,GλiCi

 ,

PΦ ≡


β1 ∑G

g′=1 νΣf,g′Φg′

β2 ∑G
g′=1 νΣf,g′Φg′

...
β I ∑G

g′=1 νΣf,g′Φg′

 ,

λ ≡


λ1
λ2
...

λI

 ,

the NTE reads

∂

∂t

(
Ψ

v

)
+ LΨ =Qext + SΨ + FpΨ + CC, (40a)
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∂

∂t
C =PΦ− λC, (40b)

with the same boundary and initial conditions for Ψ as for the CTE, along with the initial condition for the DNPs

C|t=t0
= C0, (40c)

where C0 are the initial DNP concentrations. It is noted that FΨ = FdΨ + FpΨ. We also define few DNP related
operators:

Fd,iΨ ≡
1

4π
Fd,i,0Φ ≡


1

4π βiχd,i,1 ∑G
g′=1 νΣf,g′Φg′

1
4π βiχd,i,2 ∑G

g′=1 νΣf,g′Φg′

...
1

4π βiχd,i,G ∑G
g′=1 νΣf,g′Φg′

 ,

CiCi ≡
1

4π
Ci,0Ci ≡

1
4π


χd,i,1λiCi
χd,i,2λiCi

...
χd,i,GλiCi

 ,

PiΦ ≡βiF.

It can be seen that

FdΨ =
I

∑
i=1

Fd,iΨ, (41)

CC =
I

∑
i=1

CiCi, (42)

PΦ =


P1Φ
P1Φ

...
PIΦ

 . (43)

The steady-state NTE is

LΨ =Qext + SΨ + FΨ, (44)

with the appropriate boundary conditions. It is often important to obtain the neutron multiplication factor by
solving the following generalized eigenvalue problem

LΨ =SΨ +
1
k
FΨ, (45)

with the homogeneous boundary condition, i.e. the surface source Ψinc
b = 0. The multiplication factor corresponds

to the largest eigenvalue k satisfying Eq. (45). It is also often called k-effective. This largest eigenvalue and its
corresponding eigenvector are often referred to as the fundamental mode. Higher eigenmodes could be of interest
for certain applications like flux reconstruction due to small perturbations, etc. Eq. (45) is known as the k-eigenvalue
problem, as opposed to the α-eigenvalue problem, which is

LΨ =SΨ + FΨ− α
Ψ

v
. (46)

In addition, eigenvalue problems are steady-state problems. The k-eigenvalue problem is usually used to provide
the initial condition for fast transient problems (time scale of seconds to minutes) and a factor of 1

k is applied to the
fission cross section to make sure the initial condition is self-sustained without changing the problem configuration
during the transient. A sequence of k-eigenvalue problems is often solved in lieu of transients for slow transients
(time scale of days to weeks) for computing the change of the isotope inventory. This specific, slow transient is
referred to as depletion in nuclear reactor analysis and the solution method is referred to as quasi-static method.
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If we define the following adjoint operators,

F∗pΨ∗ ≡ 1
4π

F∗p,0Φ∗ ≡


1

4π (1− β) νΣf,1 ∑G
g′=1 χp,g′Φ∗g′

1
4π (1− β) νΣf,2 ∑G

g′=1 χp,g′Φ∗g′
...

1
4π (1− β) νΣf,G ∑G

g′=1 χp,g′Φ∗g′

 ,

F∗dΨ∗ ≡ 1
4π

F∗d,0Φ∗ ≡


1

4π νΣf,1 ∑G
g′=1 ∑I

i=1 βiχd,i,g′Φ∗g′
1

4π νΣf,2 ∑G
g′=1 ∑I

i=1 βiχd,i,g′Φ∗g′
...

1
4π νΣf,G ∑G

g′=1 ∑I
i=1 βiχd,i,g′Φ∗g′

 ,

F∗Ψ∗ ≡ 1
4π

F∗0Φ∗ ≡


1

4π νΣf,1 ∑G
g′=1 χg′Φ∗g′

1
4π νΣf,2 ∑G

g′=1 χg′Φ∗g′
...

1
4π νΣf,G ∑G

g′=1 χg′Φ∗g′

 ,

P∗C∗ ≡ 1
4π

P∗0C∗ ≡


1

4π νΣf,1 ∑I
i=1 βiC∗i

1
4π νΣf,2 ∑I

i=1 βiC∗i
...

1
4π νΣf,G ∑I

i=1 βiC∗i

 ,

C∗0Φ∗ ≡


λ1 ∑G

g′=1 χd,1,g′Φ∗g′
λ2 ∑G

g′=1 χd,2,g′Φ∗g′
...

λI ∑G
g′=1 χd,I,g′Φ∗g′

 ,

the adjoint NTE is

− 1
v

∂

∂t
Ψ∗ + L∗Ψ∗ =Q∗ext + S∗Ψ∗ + F∗pΨ∗ + P∗C∗, (47a)

− ∂

∂t
C∗ =C∗0Φ∗ − λC∗, (47b)

with the same boundary condition and the final condition as for the adjoint CTE and the final condition for the
adjoint DNPs

C∗|t=t1
= C∗1 , (47c)

where C∗1 are the final adjoint DNP concentrations. From the above equations, we can define the adjoint fission
source as

F∗p ≡
G

∑
g′=1

χp,g′Φ
∗
g′ , (48a)

F∗ ≡
G

∑
g′=1

χg′Φ
∗
g′ , (48b)

F∗d,i ≡
G

∑
g′=1

χd,i,g′Φ
∗
g′ . (48c)

We can easily see that the equilibrium adjoint DNP C∗i is equal to the delayed adjoint fission source F∗d,i. The steady-
state adjoint NTE is

L∗Ψ∗ =Q∗ext + S∗Ψ∗ + F∗Ψ∗. (49a)
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and the adjoint k-eigenvalue NTE is

L∗Ψ∗ =S∗Ψ∗ +
1
k
F∗Ψ∗. (50)

We can prove that the adjoint k-effective is the same as the primal one. The adjoint α-eigenvalue NTE is

L∗Ψ∗ =S∗Ψ∗ + F∗Ψ∗ − α
Ψ∗

v
. (51)

Similarly, the neutron diffusion equation (NDE) is

∂

∂t

(
Φ

v

)
− ~∇ ·D~∇Φ + L3Φ =Qext

0 + SdΦ + Fp,0Φ + C0C, (52a)

∂

∂t
C =PΦ− λC, (52b)

with the same boundary condition and the initial condition as those for the CDE and the same NTE initial condition
for the DNPs. The steady-state NDE is

−~∇ ·D~∇Φ + L3Φ =Qext
0 + SdΦ + F0Φ (53)

with the corresponding boundary conditions. The k-eigenvalue problem is

−~∇ ·D~∇Φ + L3Φ = SdΦ +
1
k
F0Φ (54)

with homogeneous boundary conditions. The α-eigenvalue problem is

−~∇ ·D~∇Φ + L3Φ = SdΦ + F0Φ− α
Φ

v
, (55)

with the same homogeneous boundary condition. The adjoint NDE is

− 1
v

∂

∂t
Φ∗ − ~∇ ·D~∇Φ∗ + L3Φ∗ =Qext∗

0 + S∗dΦ∗ + F∗p,0Φ∗ + P∗0C∗, (56a)

− ∂

∂t
C∗ =C∗Φ∗ − λC∗, (56b)

with the same boundary condition and the final condition as those for the adjoint CDE and the same NTE final
condition as for the DNPs. The steady-state adjoint NDE is

−~∇ ·D~∇Φ∗ + L3Φ∗ =Qext∗
0 + S∗dΦ∗ + F∗0Φ∗ (57)

with the corresponding boundary conditions. The k-eigenvalue problem is

−~∇ ·D~∇Φ∗ + L3Φ∗ = S∗dΦ∗ +
1
k
F∗0Φ∗ (58)

with homogeneous boundary conditions. The α-eigenvalue problem is

−~∇ ·D~∇Φ∗ + L3Φ∗ = S∗dΦ∗ + F∗0Φ∗ − α
Φ∗

v
, (59)

with the same homogeneous boundary conditions.

2.4 Thermal radiation

2.4.1 Physics of thermal radiation transport

Thermal radiation is created by the energy released by the oscillations or transitions of the many electrons contained
in matter. All forms of matter emit thermal radiation. Energy of thermal radiation particles – or photons – is
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measured with the standard wave properties of frequency, ν, and/or wavelength, λ. These two properties are related
by

λ =
c
ν

, (60)

where c is the speed of light in a medium. It is noted that the notations λ for wavelengh and ν for frequency are
widely accepted in literature and their difference with decay constant and averaged neutron emission per fission is
obvious in context. So we do not introduce a new notation to distinguish these quantities here. After introducing
the multigroup approximation, these quantities will not appear in the equations.

For thermal radiation, only the portion of the electromagnetic wave spectrum is usually of interest, which extends
from approximately 0.1 to 1000 µm; this range encompasses a portion of the ultraviolet and all of the visible and
infrared (IR) light. It is noted that these limits are to some degree arbitrary. The range considered thermal radiation
is roughly related to the frequencies a black body (refer to Appendix G) is likely to emit at temperatures of interest.
For example, barely more than 1 percent of the total radiation is emitted above 1000µm by a black body with a
temperature below 9K. Similarly, a black body only releases a few percent of its energy in the range λ < 0.1µm if its
temperature lies around 15, 000K.

Thermal radiation transport is only one type of a more general phenomenon called photon radiation transport, which
include the study of:

• high-energy photons (x-rays and γ-rays) with energies of starting with roughly 100 eV. The main interaction
mechanisms are Compton Scattering, photoelectric absorption, and pair production (pair production has an
energy threshold of 1022 keV). No black-body radiation is present because typically all bodies have temper-
atures far too cold to contribute to the considered energy range. A body would have to be at T = 116, 750 K
to emit more than 1% of its energy above 100 eV. The dominant energy redistribution mechanism is Compton
scattering.

• thermal photons this is the intermediate energy range, where energies are comparable to electron shell energy
levels. Typically, the energies are high enough to get some Compton scattering acting as competing energy
redistribution in addition to black body re-emission. In addition to Compton scattering, Rayleigh scattering,
photo-electric absorption and resonance scattering (resonance fluorescence) are important. Thermal photons
originate from very hot black body emitters T > 5000 K. The energy redistribution mechanisms are absorp-
tion/emission and Compton scattering.

• thermal radiation is the radiation emitted by black body emitters up to moderate temperatures (< 5000 K).
At these temperatures the energy is sufficiently low [at 1000 K 99.7 % of photons have energies < 1 eV, at
5000 K 99.7 % of photons have energies < 5 eV] so that Compton scattering is negligible1 and even electron
shell excitation levels are sufficiently larger in energy. In this case, the redistribution of energies in energy
occurs only through black body emission. Note, though that in general the spectrum at some point can be a
superposition of several Planckians which make the local spectrum non-Planckian. The photon energies are
comparable to molecular torsion and vibrational modes that humans would sense as heat. Energy redistribu-
tion occurs through absorption/emission. Most of the photons have energies below the energy threshold of
photoelectric absorption which is of the order of electronic shell energies preventing predominant absorption
of certain wave-lengths.

The manner in which photons interact with the background medium differs significantly for these three categories
and hence they are usually considered separately as different physics. Rigorously, radiation exerts a force on the
background material while it propagates through and accelerates the material in the direction of the radiation flow.
In thermal radiation transport though, this effect is typically too small to be considered. Therefore, we couple the
radiation equation with a stationary medium, i.e. a motionless material. The fully coupled problem with radiation
transport and material motion is referred to as radiation-hydrodynamics [9, 10, 11] and will not be discussed here.

Typical applications well suited for simulation using radiative heat transfer include the following:

1It should be noted that coherent Thomson scattering is the low energy level of Compton scattering and hence it is technically incorrect to
talk about Compton scattering not occurring. More correctly, one would state that in the low energy limit Compton scattering becomes coherent
and does not act as energy re-distribution mechanism [11].
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• Radiative heat transfer from flames;

• Surface-to-surface radiant heating or cooling;

• Coupled radiation, convection, and/or conduction heat transfer;

• Radiation through windows in HVAC (Heating, Ventilation and Air Conditioning) applications, and cabin
heat transfer analysis in automotive applications;

• Radiation in glass processing, glass fiber drawing, and ceramic processing.

Physics of radiative heat transfer should be considered when the radiant heat flux is large compared to the heat
transfer rate due to convection or conduction. Typically this will occur at high temperatures where the fourth-order
dependence of the radiative heat flux on temperature implies that radiative effects are dominant.

The angular flux used for describing the distribution of thermal radiation in the phase space has a particular name,
the specific intensity, and is denoted by I(~x, ~Ω, ν, t) in the literature. Here, we will continue using Ψ for consistency.
The physical meaning of Ψ can be understood by considering a small small element of area in phase space ~Ω ·
~ndνdΩds; then Ψ(~x, ~Ω, ν, t)~Ω ·~ndνdΩds is the rate at which radiation energy with frequencies of (ν, ν+ dν), direction
of motions in dΩ about ~Ω is transported across an element of area ds in a time interval dt, where ~n is the normal
to the surface. Throughout our study, we use the centimeter-gram-second (cgs) units by default, though more unit
systems are available in Rattlesnake. While the fundamental quantity for neutron transport is the neutron density,
the energy density is more valued in radiation transport because it is conserved, unlike the number of photons. In
the thermal radiation transport community, Φ

c is called monochromatic energy density, the current ~J is called flux, the
total macroscopic cross section Σt,g is referred to as the opacity. Although absorption can be – in all generality – be
angularly dependent, it is usually isotropic in a stationary medium, i.e. independent of the angle of the incident
radiation. This approximation is known as diffuse absorption. In thermal radiation transport, isotropic scattering
is often assumed due to the dominated by coherent scattering denoting scattering events that do not change the
frequency of the photon. Scattering theory for low energy photons is separated into Rayleigh scattering and Mie
scattering. Rayleigh scattering describes cases, where the particle the photon scatters with is much smaller than
the wavelength of the photon, while Mie scattering describes cases where the particle can be of the same size or
larger compared with the photon wavelength. Rayleigh scattering is almost isotropic in the laboratory frame, while
Mie scattering can be significantly anisotropic. In radiative heat transfer, Rayleigh scattering from molecules and
atoms is usually more important while Mie scattering applies to cases where scattering off of dust or water droplets
is considered. Within the energy range of thermal radiative transfer, scattering can often be neglected because
Rayleigh scattering cross sections has a 1/λ4 dependence and hence occurs predominantly at small wavelengths
and is practically insignificant for λ > 1µm. It is noted that all frequencies are coupled indirectly through black
body emission but not by down-scattering as in the NTE.

In radiative heat transfer, no distinction is made between absorption and emissivity (ε) when LTE (local thermody-
namic equilibrium) is assumed. This is stated in Kirchhoff’s law: for a body of any arbitrary material, emitting and
absorbing thermal electromagnetic radiation at every wavelength in thermodynamic equilibrium, the ratio of its emis-
sive power to its dimensionless coefficient of absorption is equal to a universal function depending only on the radiative
wavelength and temperature, the perfect black body emissive power.

In the general case, the emission characteristic of materials depend on the population of energy states in the material.
By the process of induced emission, the population of these states depends on the radiation field Ψ itself. LTE
assumes that the population is dominated by atomic collisions and hence is independent of the radiation field.
This allows the emission characteristics to be described by a few thermodynamic variables such as temperature
and density which in LTE govern the . Under LTE, absorbtivity and emissivity are closely related [11]. Essentially,
LTE establishes that εg = Σa,g. and in a lot of cases, this assumption is valid. With the multigroup approximation
however, because the weighting of total interaction and emission terms are different, the emissivity is no longer
equal to the absorption. Hence, we keep the emissivity for the black body emission term.

In most solids and liquids, radiation emitted from interior molecules is strongly absorbed by adjoining molecules
and are within a distance of approximately 1µm from the exposed surface. For this reason, the solid or liquid body
is removed from the solution domain, and instead, we impose proper boundary conditions on their surfaces and view
their emissions as surface phenomena. We call this opaque treatment. The surface emission has energy and directional
dependencies. The spectral distribution varies with the nature and temperature of the emitting surface. The surface
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emissivity εs(λ, ~Ω, T) is defined as the ratio of the radiation emitted by the surface to the radiation emitted by a
black body at the same temperature. Typically isotropic emission is a good approximation for most surfaces and
the normal emissivity εn(λ, T) = εs(λ, ~Ω ·~n = 0, T) is a good measure of the emissivity. The manner in which εn
varies with λ depends on whether the solid is a conductor or nonconductor, as well as the nature of the surface
coating. The spectral distribution of εn(λ, T) is approximately independent of temperature. More comprehensive
emissivity compilations can be found in [38, 39, 40, 41]. Measurements of surface emissivity are often limited to
determining its normal to the surface, for a few chosen wavelengths or only the hemispherical total emissivity.
Its strong dependence on the surface condition is an additional difficulty. Impurities also play a role, alongside
roughness. In view of the experimental difficulties a theory for radiation properties is desirable. Unfortunately
the electromagnetic theory is only valid under a series of limiting suppositions, so that the emissivities calculated
often differ from reality. Typically, it depends on the temperature, the polar angle, the wavelength and some other
properties like the electrical resistivity. The dependence of the absorptivity on the surface temperature is generally
small. If the surface is opaque, absorptivity and reflectivity sum to one. The assumption of diffuse reflection (white
boundary condition) is reasonable for most engineering applications.

In technical applications, gas radiation in the infrared – i.e. at wavelengths above 1µm – is of interest. The main
emitters in that portion of the spectrum are CO2 and H2O, although other gases such as CO, SO2, NH3, CH4 and
other hydrocarbons also emit therein. In contrast, N2 and O2, the main constituents of air allow radiation in the
infrared region to pass through with virtually no attenuation; they do not absorb, and therefore – according to
Kirchhoff’s law – do not emit either. Gases only absorb and emit radiation in narrow wavelength regions, called
bands. Gases cannot be idealized as gray radiators [a gray radiator is defined as a body emitting less energy than a
black body but featuring a black body spectrum] without loss of accuracy because the available energy state are not
sufficiently dense to justify a black body emission spectrum. We will typically assume that radiation is absorbed but
not scattered. This applies to the infrared wavelengths because Rayleigh scattering by molecules only takes place
at very small wavelengths and is practically insignificant for λ > 1µm.

Radiation speed could change either abruptly at interfaces or smoothly within a medium. The former requires a
general interface condition Eq. (608a) in Appendix H. When the radiation speeds in the two interfacing media are
the same, the condition reduces to the normal continuity condition as in neutron transport.

The latter introduces one more term to account for the effect from the varying refractive index.(
1
n
~∇n · ~∇S −

2
n
~Ω · ~∇n

)
Ψ, (61)

where ~∇S is the spherical gradient operator on the 2D unit sphere (see Appendix B). This term is typically treated
with the spherical harmonics expansion.

2.4.2 Thermal radiation transport equation (TRTE)

The TRTE requires an extra term, the black body emission:

1
4π

SBB,g(T) ≡
1

4π
εg
(

F(nλgT)− F(nλg+1T)
)

c0an2T4, (62)

where

εg(~x, t) emissivity [cm−1],

n(~x) ≡ c
c0

refractive index of medium,

T(~x, t) medium temperature [K],
F fraction of black body emission, function of nλT,

c0 speed of light in vacuum 2.99792458× 1010[cm s−1],
λg upper boundary of the wavelength of the frequency band [cm],

λg+1 lower boundary of the wavelength of the frequency band [cm],

a ≡ 8π5k4/(15h3c3
0) radiation constant 7.5646× 10−15[erg cm−3 K−4],
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k Boltzmann constant 1.38064852(79)× 10−16[erg K−1],

h̄ Planck constant 6.6260755(40)× 10−27[erg s].

The black body emission operator is nonlinear with respect to the medium’s temperature. More details about the
black body emission can be found in Appendix G. The TRTE is often solved along with the material temperature
equation

ρCV
∂T
∂t

= ~∇ ·
(

De~∇T
)
−

G

∑
g=1

(SBB,g − Σa,gΦg) + Q (63a)

where

ρ(~x, t) density [g cm−3],

CV(~x, t) specific heat [erg g−1K−1],

De(~x, t) thermal conductivity [erg s−1 cm−1 K−1],

Q(~x, t) volumetric heat source [erg s−1 cm−3],

Φg(~x, t) scalar intensity [erg cm−2 s−1],

Σa,g(~x, t) absorptivity [cm−1],

with the Dirichlet boundary condition

T(~x, t) = Tb(~x, t), ~x ∈ ∂D1, (63b)

the heat flux boundary condition

~∇T ·~nb = hb, ~x ∈ ∂D2. (63c)

and the initial condition

T(~x, t = t0) = T0(~x), ~x ∈ D. (63d)

If we neglect thermal conduction, no boundary condition is needed for the temperature equation. The second
term on the right hand side means that energy transferred from the radiation field must be added to the material.
When the material and radiation fields are instantaneously at equilibrium, i.e., ∑G

g=1(SBB,g − Σa,gΦg) = 0, the
material temperature equation is decoupled from the radiation transport equation. Thermal conduction due to
other mechanism is negligibly small. The challenge of thermal radiation transport mainly lies in the equation’s
nonlinearities. The primal variable of medium temperature is often redefined to make the problem easier to solve.
Rattlesnake provides three options of defining the temperature primal variable, T, T4 or c0aT4.

We define

SBB ≡


SBB,1
SBB,2

...
SBB,G

 ,

TRTE becomes

∂

∂t

(
Ψ

v

)
+ LΨ =Qext + SΨ +

1
4π

SBB, (64)

with the same boundary and initial conditions for Ψ as for the CTE. The thermal radiation diffusion equation
(TRDE) is

∂

∂t

(
Φ

v

)
− ~∇ ·D~∇Φ + L3Φ =Qext

0 + S0Φ + SBB, (65)

with the same boundary condition and the initial condition as those for the CDE.
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3 Weak Forms of the Multigroup Radiation Transport Equations

This section presents the weak forms for the multigroup radiation transport equations with the spatial and angular
discretizations available in Rattlesnake. The weak form without considering the numerical stabilization of the
streaming term is presented first. Unstabilized weak form for the adjoint equation will also be given. Various
vacuum and reflecting boundary conditions are considered. It is noted that those conditions apply to all later
numerical weak forms. Then the form of different formulations including SAAF (self-adjoint angular flux) [42, 43,
44, 45, 46] and LS (least-square) [47, 48, 49] suitable for spatial discretization with CFEM are derived. The simularity
and difference between SAAF and LS are briefly discussed. We then present the upwinding scheme with DFEM
for the original transport equation (first-order form of the streaming). We present these weak forms for the CTE
only. The complete weak forms with angular discretization are finally given along with terms specific for each
particle. The extra kernels required by curvilinear coordinates are given. The kernels appearing in the complete
weak forms are linked with the code. Weak forms with both CFEM and DFEM for the multigroup diffusion equation
are given independently. The conditions for equivalence between the diffusion and PN projections are discussed.
In all these weak forms, the time derivative is kept un-discretized. We leave its discretization to the method of
lines and will briefly discuss it Section 5. Then the interface conditions for the multi-scheme transport are given.
Reduced order method (ROM) derived from the weak forms for the neutron transport equation is discussed in
general. Its applications are presented including, dumping the PKE (point kinetics equation) parameters along
with a transient solve, evaluation of the multi-region PKE parameters and IQS (improved quasi-static). Solving
techniques associated with various weak forms will be deferred to Section 5.

Because we use the method of lines to treat the time discretization, we drop the time integration and dependency
in the definition of the inner product. If the functions have time dependency, the inner product will be evaluated at
a particular time. We define our inner product as

(a, b)D⊗S ≡
G

∑
g=1

∫
S

dΩ
∫
D

dx ag(~x, ~Ω)bg(~x, ~Ω), (66a)

where a and b are generic multigroup functions defined on D ⊗ S . We drop the subscript D ⊗ S for notation
simplicity. If the integration domain is different from this default domain, it needs to be included as the subscript,
such as (a, b)D⊗S+~n

. We also find the definitions of the following boundary integrals useful:

〈a, b〉± ≡
G

∑
g=1

∮
∂D

dx
∫
S±~nb

dΩ
∣∣∣~Ω ·~nb

∣∣∣ ag(~x, ~Ω)bg(~x, ~Ω), (66b)

〈a, b〉 ≡
G

∑
g=1

∮
∂D

dx
∫
S

dΩ
∣∣∣~Ω ·~nb

∣∣∣ ag(~x, ~Ω)bg(~x, ~Ω), (66c)

where a and b are generic multigroup functions defined on ∂D ⊗ S . If the integration is on a general surface Γ
other than ∂D, it needs to be included in the subscript as 〈a, b〉Γ. We also define the inner product of two generic
functions over subdomain D as

(a, b)D ≡
G

∑
g=1

∫
D

dx ag(~x)bg(~x). (66d)

We use the subscript D to explicitly indicate this inner product only involves a spatial integration. This inner
product is evaluated at a particular direction and a particular time if the two functions have such dependencies. We
also define the inner product of two generic functions over a surface such as ∂D as

(a, b)∂D ≡
G

∑
g=1

∮
∂D

dx ag(~x)bg(~x). (66e)

3.1 The unstabilized form

We multiply the test function Ψ∗ with Eq. (3) and integrate over the phase space(
Ψ∗,

∂

∂t

(
Ψ

v

))
+ (Ψ∗,LΨ) =

(
Ψ∗, Qext)+ (Ψ∗,SΨ) ,
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and apply the property with integration by parts,

(a,Lb) + 〈a, b〉− = (L∗a, b) + 〈a, b〉+ , (67)

on the streaming term,(
Ψ∗,

∂

∂t

(
Ψ

v

))
+ (L∗Ψ∗, Ψ) + 〈Ψ∗, Ψ〉+ − 〈Ψ∗, Ψ〉− =

(
Ψ∗, Qext)+ (Ψ∗,SΨ) ,

then we substitute the boundary condition in the boxed term and obtain(
Ψ∗,

∂

∂t

(
Ψ

v

))
+ (L∗Ψ∗, Ψ) + 〈Ψ∗, Ψ〉+ −

〈
Ψ∗, Ψinc + BΨ

〉−
=
(
Ψ∗, Qext)+ (Ψ∗,SΨ) .

We denote the test function as Ψ∗, the same notation of adjoint solution. It will be obvious why we use this notation
after deriving the adjoint weak form. The weak form is:
Find a solution Ψ in the function space V, such that

b (Ψ∗, Ψ) = l (Ψ∗) , ∀Ψ∗ ∈ V, (68a)

where

b (Ψ∗, Ψ) ≡
(

Ψ∗,
∂

∂t

(
Ψ

v

))
+ (L∗Ψ∗, Ψ) + 〈Ψ∗, Ψ〉+ − 〈Ψ∗,BΨ〉− − (Ψ∗,SΨ) , (68b)

l (Ψ∗) ≡
〈

Ψ∗, Ψinc
〉−

+
(
Ψ∗, Qext) . (68c)

The function space V include all possible analytical transport solution functions. Its precise mathematical definition
is not the interest of this manual. The function space V where a solution is sought and the function space for the test
functions are identical (i.e. we use Galerkin FEM). Because the test function is arbitrary in the space, the solution
satisfying Eq. (68b) is uniquely determined. Each individual term of the bilinear and linear form is called a kernel
with the MOOSE terminology.

We can do the same procedure for the adjoint equation and end up with:
Find a solution Ψ∗ ∈ V, such that

b
∗ (Ψ∗, Ψ) = l

∗ (Ψ) , ∀Ψ ∈ V, (69a)

where

b
∗ (Ψ∗, Ψ) ≡−

(
1
v

∂

∂t
Ψ∗, Ψ

)
+ (Ψ∗,LΨ) + 〈Ψ∗, Ψ〉− − 〈B∗Ψ∗, Ψ〉+ − (S∗Ψ∗, Ψ) , (69b)

l
∗ (Ψ) ≡

〈
Ψ∗out, Ψ

〉+
+
(
Q∗ext, Ψ

)
. (69c)

For steady state problems, the transient kernels
(

Ψ∗, ∂
∂t
(

Ψ
v
))

and
(

1
v

∂
∂t Ψ∗, Ψ

)
can be dropped. It can be seen that

with zero initial and final conditions or steady-state, b (Ψ∗, Ψ) = b∗ (Ψ∗, Ψ). The same bilinear form for the primal
equation can be applied to the adjoint equation.

In curvilinear coordinates, the transport equation has an extra term due to the streaming term EΨ,

EΨ ≡


EΨ1
EΨ2

...
EΨG

 ,

where the definition of operator E can be found in Appendix C and the L operator is given by Eq. (2.1) that is valid
in both Cartesian and curvilinear coordinate systems. It should be noted that we use the It is noted that the the
adjoint operator L∗ is still accurate. It will be useful to define another extra streaming operator E2Ψ here:

E2Ψ ≡


E2Ψ1
E2Ψ2

...
E2ΨG

 ,
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where the definition of operator E2 can also be found in Appendix C. Rattlesnake is based on MOOSE, which
supports 1D R-spherical and 2D R-Z cylindrical coordinates besides 1D, 2D and 3D Cartesian coordinates. The
definition of this extra term in R-spherical is

EΨ ≡


1
r

∂
∂µ

[(
1− µ2)Ψ1

]
1
r

∂
∂µ

[(
1− µ2)Ψ2

]
...

1
r

∂
∂µ

[(
1− µ2)ΨG

]

 .

It is in R-Z coordinates

EΨ ≡


− 1

r
∂

∂ω (ΩθΨ1)

− 1
r

∂
∂ω (ΩθΨ2)

...
− 1

r
∂

∂ω (ΩθΨG)

 .

When using either of these curvilinear coordinates, an extra term need be added to Eq. (68b):

(Ψ∗,EΨ) . (70)

3.2 Boundary conditions

In the previous section, the boundary conditions are applied on the boxed term 〈Ψ∗, Ψ〉−. However, there are other
ways to apply them [50]. To derive them, we first split the boundary terms into four parts:

〈Ψ∗, Ψ〉+ − 〈Ψ∗, Ψ〉− =
∫
S

(
~Ω ·~nbΨ∗, Ψ

)
∂D

dΩ

=
∫
S

(
~Ω ·~nbΨ∗e , Ψo

)
∂D

dΩ +
∫
S

(
~Ω ·~nbΨ∗o, Ψe

)
∂D

dΩ

= 〈Ψ∗e , Ψo〉+ − 〈Ψ∗e , Ψo〉− + 〈Ψ∗o, Ψe〉+ − 〈Ψ∗o, Ψe〉− , (71)

with the even parity Ψ∗e , Ψe and odd parity Ψ∗o, Ψo fluxes being defined as

Ψ∗e ≡
Ψ∗(~Ω) + Ψ∗(−~Ω)

2
; Ψe ≡

Ψ(~Ω) + Ψ(−~Ω)

2
; (72a)

Ψ∗o ≡
Ψ∗(~Ω)−Ψ∗(−~Ω)

2
; Ψo ≡

Ψ(~Ω)−Ψ(−~Ω)

2
. (72b)

With these definitions, we have

Ψ∗e(−~Ω) = Ψ∗e(~Ω); Ψ∗o(−~Ω) = −Ψ∗o(~Ω), (72c)

Ψe(−~Ω) = Ψe(~Ω); Ψo(−~Ω) = −Ψo(~Ω), (72d)
Ψ∗ = Ψ∗e + Ψ∗o; Ψ = Ψe + Ψo. (72e)

We will split the boundary into three non-overlapping parts ∂D = ∂Ds ∪ ∂Dr ∪ ∂Dw and assume that only one type
of boundary condition is applied on each part.

For the external non-homogeneous part Ψinc
b , we convert the boundary condition into parity form

Ψe + Ψo =Ψinc, ~Ω ·~nb < 0 and ~x ∈ ∂Ds (73a)

Ψe −Ψo =Ψinc(−~Ω), ~Ω ·~nb > 0 and ~x ∈ ∂Ds. (73b)

If we substitute Eq. (73a) into the second and the fourth term of Eq. (71), we have

〈Ψ∗e , Ψo〉+∂Ds
−
〈

Ψ∗e , Ψinc −Ψe

〉−
∂Ds

+ 〈Ψ∗o, Ψe〉+∂Ds
−
〈

Ψ∗o, Ψinc −Ψo

〉−
∂Ds
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= 〈Ψ∗e , Ψo〉+∂Ds
+ 〈Ψ∗e , Ψe〉−∂Ds

+ 〈Ψ∗o, Ψe〉+∂Ds
+ 〈Ψ∗o, Ψo〉−∂Ds

−
〈

Ψ∗, Ψinc
〉−

∂Ds

= 〈Ψ∗e , Ψo〉+∂Ds
+ 〈Ψ∗e , Ψe〉+∂Ds

+ 〈Ψ∗o, Ψe〉+∂Ds
+ 〈Ψ∗o, Ψo〉+∂Ds

−
〈

Ψ∗, Ψinc
〉−

∂Ds

= 〈Ψ∗, Ψ〉+∂Ds
−
〈

Ψ∗, Ψinc
〉−

∂Ds
, (74)

which is the same as the boundary terms in Section 3.1. Note that we applied the following property in the second
to last step of the above derivation∫

∂D
dx
∫
~Ω·~nb>0

dΩ
∣∣∣~Ω ·~nb

∣∣∣ be =
∫

∂D
dx
∫
H

dΩ
∣∣∣~Ω ·~nb

∣∣∣ be, (75a)∫
∂D

dx
∫
~Ω·~nb>0

dΩ
∣∣∣~Ω ·~nb

∣∣∣ bo =
∫

∂D
dx
∫
H

dΩ~Ω ·~nbbo, (75b)

whereH(~n0) =
{
~Ω ∈ S , ~Ω ·~n0 > 0

}
is the half angular space with respect to an arbitrarily oriented normal~n0.

If we substitute Eq. (73a) into the second term and Eq. (73b) into the first term of Eq. (71), we have〈
Ψ∗e , Ψe −Ψinc(−~Ω)

〉+
∂Ds
−
〈

Ψ∗e , Ψinc −Ψe

〉−
∂Ds

+ 〈Ψ∗o, Ψe〉+∂Ds
− 〈Ψ∗o, Ψe〉−∂Ds

=2 〈Ψ∗e , Ψe〉+∂Ds
− 2

〈
Ψ∗e , Ψinc

〉−
∂Ds

+ 2 〈Ψ∗o, Ψe〉+∂Ds

= 〈Ψ∗, Ψ〉+∂Ds
+
〈

Ψ∗, Ψ(−~Ω)−Ψinc
b (−~Ω)

〉+
∂Ds
−
〈

Ψ∗, Ψinc
〉−

∂Ds
, (76)

It can be seen that the coupling from odd parity to even parity due to the surface flux is removed. If there is no
anisotropic scattering, the even parity components can be solved independently.

If we substitute Eq. (73a) into the last term and Eq. (73b) into the third term of Eq. (71), we have

〈Ψ∗, Ψ〉+∂Ds
−
〈

Ψ∗, Ψ(−~Ω)−Ψinc(−~Ω)
〉+

∂Ds
−
〈

Ψ∗, Ψinc
〉−

∂Ds
. (77)

Another type often referred to as parity-equivalent (PE) is also seen in literature

〈Ψ∗, Ψ〉+∂Ds
+
〈

Ψ∗, Ψ−Ψinc
〉−

∂Ds
−
〈

Ψ∗, Ψinc
〉−

∂Ds
.

Derivation of the reflecting boundary condition starts from splitting

〈Ψ∗, Ψ〉+∂Dr
−
〈

Ψ∗, Ψ(~Ωr)
〉−

∂Dr

into

〈Ψ∗, Ψ〉+∂Dr
−
〈

Ψ∗e , Ψe(~Ωr)
〉−

∂Dr
−
〈

Ψ∗e , Ψo(~Ωr)
〉−

∂Dr
−
〈

Ψ∗o, Ψe(~Ωr)
〉−

∂Dr
−
〈

Ψ∗o, Ψo(~Ωr)
〉−

∂Dr
. (78)

If we substitute the condition

Ψe =Ψe(~Ωr),~x ∈ ∂Dr, (79a)

Ψo =Ψo(~Ωr),~x ∈ ∂Dr. (79b)

into the second and forth terms of Eq. (78), we obtain

〈Ψ∗, Ψ〉+∂Dr
−
〈

Ψ∗,
1
2
(Ψ + Ψ(~Ωr))

〉−
∂Dr

−
〈

Ψ∗,
1
2
(Ψ−Ψ(~Ωr))

〉+

∂Dr

. (80)

35



3.3 Spatial discretization and stabilization Rattlesnake Theory Manual

The above condition is asymmetric because of the terms involving Ψ(~Ωr). We can obtain a symmetric reflecting
boundary condition type by simply change the sign of the last term in Eq. (80):

〈Ψ∗, Ψ〉+∂Dr
−
〈

Ψ∗,
1
2
(Ψ + Ψ(~Ωr))

〉−
∂Dr

+

〈
Ψ∗,

1
2
(Ψ−Ψ(~Ωr))

〉+

∂Dr

. (81)

It is noted that this change does not affect the consistency of the condition because analytically Ψ = Ψ(~Ωr) on ∂Dr.

Notation can be simplified if we introduce numerical flux Ψ̄ on the boundary and define them properly.

〈Ψ∗, Ψ̄〉+ − 〈Ψ∗, Ψ̄〉− (82)

We summarize these four different types for vacuum into Table 1, and three types for reflecting into Table 2.

Table 1 Vacuum boundary condition types.

Name Ψ̄ on S+~nb
Ψ̄ on S−~nb

Odd-to-even decoupled

SAAF Ψ Ψinc No
EVEN Ψ + Ψ(−~Ω)−Ψinc(−~Ω) Ψinc Yes
ODD Ψ−Ψ(−~Ω) + Ψinc(−~Ω) Ψinc No

PE Ψ Ψ−Ψinc −Ψinc Yes

Table 2 Reflecting boundary condition types.

Name Ψ̄ on S+~nb
Ψ̄ on S−~nb

Symmetric

SAAF Ψ Ψ(~Ωr) No
NSYM Ψ− 1

2 (Ψ−Ψ(~Ωr))
1
2 (Ψ + Ψ(~Ωr)) No

SYM Ψ + 1
2 (Ψ−Ψ(~Ωr))

1
2 (Ψ + Ψ(~Ωr)) Yes

No extra types for white boundary is implemented.

3.3 Spatial discretization and stabilization

Because the transport equation is hyperbolic in nature, stabilization must be applied to the spatial discretization.
After presenting some fundamental FEM notations, we will discuss three stabilization techniques implemented
in Rattlesnake: SAAF, LS and upwinding with DFEM. We use CTE for all of the stabilization techniques because
generalization for various particle types is trivial. We give kernels including the kernels for various particles in the
fully discretized (both space and angle are discretized) weak forms in Section 3.4 later. Balance equations with the
isotropic test function are given. These equations are closely related to transport corrected diffusion equations for
nonlinear diffusion accelerations (NDA).

3.3.1 FEM notations

With FEM we perform the spatial discretization by first triangulating or meshing the domainDwith non-overlapping
elements D = ∪e∈ThDe, where Th is used to denote the triangulation or the mesh and De is the partial domain cov-
ered by an element indexed with e. Elements are typically not arbitrarily shaped; rather, they are described with
nodes positioned in D. The number of nodes of an element depends on the element type: for example, 8 for a hexa-
hedron, 4 for a tetrahadron, etc. in 3D or 4 for a quadrilateral, 3 for a triangle, etc. in 2D or 2 for a so-called edge in
1D. These nodes are implicitly ordered to define an element. Elements can be unstructured. They can also be high
order isoparametric. For example, a 2D triangle is typically defined with three vertices (linear), but we can use six
nodes to define a triangle with curved sides: three on the vertices and three on the sides to have a quadratic element.
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Elements have sides. When the mesh is conforming, i.e. no hanging nodes in the mesh, every side can at most be
shared by two elements except those on the boundary. We define Γint ≡ ∪e∈Th (∂De \ ∂D), the set of all the interior
sides. On every interior side, a unit normal direction ~n can be defined. Weak forms should be independent of the
orientation of this interior normal. Elements on the boundary may not exactly preserve the domain boundary ∂D
especially when ∂D is curved, i.e. Γ ≡ ∪e∈Th (∂De ∩ ∂D) may not be equal to ∂D. If so, we do have D 6= ∪e∈ThDe.
But this inequality becomes exact as the number of elements on the domain goes to infinity. By convention, the
boundary normal is always chosen to point outside of the domain.

We then define the shape functions on local elements. These shape functions are the polynomial functions on the
reference elements. The number of shape functions are determined by the order of the local function space. For
example, the number of shape functions is p + 1 for 1D edges, p × (p + 1)/2 for 2D triangles, (p + 1)2 for 2D
quadrilaterals. With discontinuous FEM, these shape functions directly form the basis functions of the discretized
scalar function space Vh. With continuous FEM, shape functions on adjacent elements must be constrained to
enforce continuity of the solution, consequently basis functions with local support spanning several elements are
typically associated with mesh nodes. Continuous and discontinuous linear shape functions for 1D and 2D are
illustrated in Fig. 2a and Fig. 2b respectively. Basis functions associated with nodes are continuous and functions
associated with elements are discontinuous.

e e+1e-1

n-1 n n+1 n+2

(a) 1D

n
n+1

e

(b) 2D

Figure 2 FEM linear basis functions.

Finally, with the definition of basis functions, any spatially varying function can be approximated with

f (~x) =
N

∑
i=1

fibi(~x), (83)

where N is the dimension of the function space and bi is the basis function with local support. N is also often
referred to as the number of degrees of freedom (DoF). We can also define an index set Ee containing the indices
of the basis functions who have support on element e (i.e. that are non-zero therein). The number of indices in
Ee depends on the local polynomial order of the element e. Similarly we can define an index set Es containing the
indices of the basis functions that have support on a side of index s. With this spatial discretization, inner products
can be explicitly spelled out as

(a, b) ≡
G

∑
g=1

∫
S

dΩ ∑
e∈Th

∫
De

dx ∑
i∈Ee

ag,i(~Ω)bi(~x) ∑
j∈Ee

bg,j(~Ω)bj(~x), (84a)

〈a, b〉± ≡
G

∑
g=1

∑
s∈∂D

∫
s

dx
∫
S±~nb

dΩ
∣∣∣~Ω ·~nb

∣∣∣ ∑
i∈Es

ag,i(~Ω)bi(~x) ∑
j∈Es

bg,j(~Ω)bj(~x), (84b)

〈a, b〉 ≡
G

∑
g=1

∑
s∈∂D

∫
s

dx
∫
S

dΩ
∣∣∣~Ω ·~nb

∣∣∣ ∑
i∈Es

ag,i(~Ω)bi(~x) ∑
j∈Es

bg,j(~Ω)bj(~x), (84c)

(a, b)D ≡
G

∑
g=1

∫
D

dx ∑
i∈Ee

ag,ibi(~x) ∑
j∈Ee

bg,jbj(~x), (84d)

(a, b)∂D ≡
G

∑
g=1

∑
s∈∂D

∫
s

dx ∑
i∈Es

ag,ibi(~x) ∑
j∈Es

bg,jbj(~x). (84e)

37



3.3 Spatial discretization and stabilization Rattlesnake Theory Manual

However, we still keep the same notation without spatial expansion for simplicity.

3.3.2 SAAF

In the SAAF method, we split the streaming and collision operator L

LΨ ≡ L1Ψ + L2Ψ, (85)

where

L1Ψ ≡


~Ω · ~∇Ψ1
~Ω · ~∇Ψ2

...
~Ω · ~∇ΨG

 ,

and define

L−1
2 Ψ ≡


Ψ1
Σt,1
Ψ2
Σt,2
...

ΨG
Σt,G

 ,

We can easily see that L−1
2 L2 = I,L∗2 = L2, L∗1 = −L1 and L1L2 = L2L1.

With these definitions we can rearrange the CTE Eq. (3) as

Ψ = L−1
2

(
Qext + SΨ− ∂

∂t

(
Ψ

v

)
− L1Ψ

)
, (86)

which we call the angular flux equation (AFE). Then we substitute this AFE into the streaming kernel of the unstabi-
lized bilinear form Eq. (68b) copied here,

b (Ψ∗, Ψ) ≡
(

Ψ∗,
∂

∂t

(
Ψ

v

))
+ (L∗1Ψ∗, Ψ) + (L∗2Ψ∗, Ψ) + 〈Ψ∗, Ψ〉+ − 〈Ψ∗,BΨ〉− − (Ψ∗,SΨ) ,

and obtain the following after some manipulations

b (Ψ∗, Ψ) =
(
L1Ψ∗,L−1

2 L1Ψ
)
+ (L∗2Ψ∗, Ψ) + 〈Ψ∗, Ψ〉+

+

(
L−1

2 LΨ∗,
∂

∂t

(
Ψ

v

))
− 〈Ψ∗,BΨ〉− −

(
L−1

2 LΨ∗,SΨ
)

,

−
(
L−1

2 L1Ψ∗, Qext
)

.

We noticed that the boxed kernels are symmetric positive definite (SPD). We move the extra source term into the
linear form and finally end up with the SAAF weak form, given by:

bSAAF (Ψ
∗, Ψ) ≡

(
L1Ψ∗,L−1

2 L1Ψ
)
+ (L2Ψ∗, Ψ) + 〈Ψ∗, Ψ〉+

−
(
L−1

2 LΨ∗,
∂

∂t

(
Ψ

v

))
−
(
L−1

2 LΨ∗,SΨ
)
− 〈Ψ∗,BΨ〉− , (87)

lSAAF (Ψ
∗) ≡

〈
Ψ∗, Ψinc

〉−
+
(
L−1

2 LΨ∗, Qext
)

. (88)

SAAF is equivalent with SUPG (Streamline upwind/Petrov-Galerkin) [51] with the inverse of group-wise total cross
sections as the stabilization parameter for all directions of corresponding groups. SAAF must be modified to work
with void or near void where the total cross sections are zero or close to zero. We define the following operator

τ ≡


τ1
τ2
...

τG

 ,
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where

τg =

{
1

cΣt,g
chΣt,g ≥ ς

h
ς , chΣt,g < ς

, (89)

where h is the maximum vertex separation for points within an element; ς is usually chosen to be a constant equal
to 0.5. c is a constant to set the maximum stabilization from 1/Σt,g to 1/(cΣt,g). Its default value is 1. We then
redefine our AFE as

Ψ = (I− τL2)Ψ + τ

(
Qext + SΨ− ∂

∂t

(
Ψ

v

)
− L1Ψ

)
, (90)

If there is no void and ς is set to zero, τL2 = I and the modified SAAF is identical to the original SAAF regardless
of the mesh used. Substituting Eq. (90) into the streaming term of Eq. (68b), we obtain the weak form with this void
treatment (VT),

bSAAF-VT (Ψ
∗, Ψ) ≡ (L1Ψ∗, (τL1 − I+ τL2)Ψ) + (L2Ψ∗, Ψ) + 〈Ψ∗, Ψ〉+

+

(
(I+ τL1)Ψ

∗,
∂

∂t

(
Ψ

v

))
− ((I+ τL1)Ψ

∗,SΨ)− 〈Ψ∗,BΨ〉− , (91)

lSAAF-VT (Ψ
∗) ≡

〈
Ψ∗, Ψinc

〉−
+
(
(I+ τL1)Ψ

∗, Qext) . (92)

It is noted that group-wise global balance can be shown by substituting the constant 1 for a particular group and
0 for the rest as the test function (using the fact that the constant test function belongs to Vh). However, local or
element-wise particle balance is not guaranteed and subjects to discretization errors. If τ is zero, we retrieve the
unstabilized weak form.

The balance equation with isotropic test functions Φ∗ is(
Φ∗,

∂

∂t

(
Φ

v

))
D
−
(
~∇Φ∗,~J

)
D
+ (L2Φ∗, Φ)D − (Φ∗,S0Φ)D + (Φ∗, (I− α)Jo)∂D +τ~∇Φ∗,

∂

∂t

(
~J
v

)
+ ~∇ · (~~EΦ) + L2~J− S1~J− ~Qext

1


D

=

(
Φ∗, Jinc

)
∂D

+
(
Φ∗, Qext

0
)
D , (93)

where the boxed equation is simply the residual of the momentum equation of Eq. (18) and is analytically equal to
zero. We can further obtain the P0 projection of the unmodified weak form with τ = L−1

2 by assuming Ψ = 1
4π Φ:(

Φ∗,
∂

∂t

(
Φ

v

))
D
+

(
~∇Φ∗,

1
3
L−1

2
~∇Φ

)
D
+ (L2Φ∗, Φ)D − (Φ∗,S0Φ)D +

(
Φ∗,

1
4
(I− α)Φ

)
∂D

=(
Φ∗, Jinc

)
∂D

+
(
Φ∗, Qext

0
)
D , (94)

which is the weak form for a multigroup diffusion equation. It can be seen that this equation is slightly different
from the bilinear form for CDE, Eq. (255), with CFEM in Section 3.5

The streaming operator in the AFE needs to be updated as L1Ψ→ L1Ψ + EΨ + E2Ψ in curvilinear coordinates. The
additional term to add to Eq. (91) is thus

((I+ τL1)Ψ
∗,EΨ) + (τL1Ψ∗,E2Ψ) . (95)

We present the derivation of the mathematical adjoint equations for the stabilized SAAF equations in an abstract
form. The presented development is a generalization of the original derivation published in [52] for SAAF-SN . The
mathematical adjoint is different than the physical adjoint. The physical adjoint is obtained from the continuous
PDEs and then the the discretization is applied, while for the mathematical adjoint the equations are discretized first
and then the adjoint is obtained from the discretized equations. Obtaining the adjoint from the discretized equation
is achieved by transposing the discretized set of equations. For the first order transport equation, the physical
and mathematical adjoint equations are identical, while for the SAAF equations, there is a distinct difference. The
general advantage of the mathematical adjoint is that its property to commute under a discrete representation of
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the inner product is exactly satisfied, while it is only approximately satisfied for the physical adjoint. Adjoints are
extremely useful for perturbation theory, optimization, and sensitivity analysis.

First, the rules for the transformation leading to the mathematical adjoint are explained:

• ~Ω→ −~Ω, hence L1 →= −L1, S→ S̄, where

S̄Ψ ≡


∑G

g′=1
∫
S Σs,g′→1 fg′→1(−~Ω · ~Ω)Ψg′(~Ω′) dΩ′

∑G
g′=1

∫
S Σs,g′→2 fg′→2(−~Ω · ~Ω)Ψg′(~Ω′) dΩ′

...
∑G

g′=1
∫
S Σs,g′→G fg′→G(−~Ω · ~Ω)Ψg′(~Ω′) dΩ′

 ,

• The solution is reinterpreted as test function and the test function is reinterpreted as solution.

It should again be stressed that we now solve for the adjoint flux Ψ∗. The transformation is applied to the stabilized
bilinear SAAF form Eq. (91) on a term by term basis:

1. The streaming terms:

(L1Ψ∗, (τL1 − I+ τL2)Ψ) + 〈Ψ∗, Ψ〉+ → (−L1Ψ∗, (−τL1 − I+ τL2)Ψ) + 〈Ψ∗, Ψ〉− (96)

Note the change of the half-sphere over which boundary terms are integrated. This change originates from
inverting the angular directions. Simple manipulations of the term in Eq. (96) lead to:

(L1Ψ∗, τ(L1 − L2)Ψ) + (L1Ψ∗, Ψ) + 〈Ψ∗, Ψ〉− . (97)

Application of integration by parts on the second term in Eq. (97) reveals that:

(L1Ψ∗, Ψ) = − (Ψ∗,L1Ψ) + 〈Ψ∗, Ψ〉+ − 〈Ψ∗, Ψ〉− . (98)

Substituting Eq. (98) into Eq. (97) gives:

(L1Ψ∗, τ(L1 − L2)Ψ)− (Ψ∗,L1Ψ) + 〈Ψ∗, Ψ〉+ . (99)

2. The total interaction term remains unchanged:

(L2Ψ∗, Ψ)→ (L2Ψ∗, Ψ) = (Ψ∗,L2Ψ) . (100)

3. We do not discuss the time derivative term here because the mathematical adjoint equations are currently only
implemented for steady state and eigenvalue calculations.

4. The mathematical adjoint equations can only use specular reflective boundary conditions, so for the operator
B we set αs

g = 1 and αd
g = 0. Applying the transformation gives:

〈Ψ∗,BΨ〉− → 〈Ψ∗,BΨ〉+ = 〈B∗Ψ∗, Ψ〉− . (101)

5. The scattering term is transformed to obtain:

((I+ τL1)Ψ
∗,SΨ)→ ((I− τL1)Ψ

∗, S̄Ψ) = (S̄∗(I− τL1)Ψ
∗, Ψ) . (102)

The linear form is simply given by:

l∗(Ψ) = (Q∗, Ψ) +
〈

Ψ∗,inc, Ψ
〉−

. (103)

The source and inflow adjoint fluxes often constitute degrees of freedom to achieve a suitable adjoint flux solution
for a specific purpose. For example, the source could be the cross section in a region where the sensitivity of a
reaction rate with respect to this cross section is desired. The final mathematical adjoint SAAF equations are given
by:

bSAAF−VT
∗(Ψ, Ψ∗) = l∗(Ψ) (104)

with

bSAAF−VT
∗(Ψ, Ψ∗) = (τ(L1 − L2)Ψ,L1Ψ∗)− (L1Ψ, Ψ∗) + 〈Ψ, Ψ∗〉+

+ (L2Ψ, Ψ∗)− (Ψ, S̄∗(I− τL1)Ψ
∗)− 〈Ψ,B∗Ψ∗〉− . (105)
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3.3.3 LS

If we use LΨ∗ as the test function, we obtain the LS formulation(
LΨ∗,

∂

∂t

(
Ψ

v

))
+ (LΨ∗,LΨ) =

(
LΨ∗, Sext)+ (LΨ∗,SΨ) .

This formulation does not have the boundary condition terms. We can strongly enforce the boundary conditions or
we can add terms to weakly impose them(

LΨ∗,
∂

∂t

(
Ψ

v

))
+ (LΨ∗,LΨ) +

〈
cΨ∗, Ψ−Ψinc

b − BΨ
〉−

=
(
LΨ∗, Qext)+ (LΨ∗,SΨ) ,

where the options for c = diag{cg , g = 1, ..., G} are given in Table 3. This results into the following bilinear and
linear form

bLS (Ψ
∗, Ψ) ≡ (LΨ∗,LΨ) + 〈cΨ∗, Ψ〉−

+

(
LΨ∗,

∂

∂t

(
Ψ

v

))
− (LΨ∗,SΨ)− 〈cΨ∗,BΨ〉− , (106)

lLS (Ψ
∗) ≡

〈
cΨ∗, Ψinc

b

〉−
+
(
LΨ∗, Qext) . (107)

We can prove that when L2 is spatially independent and c = L2, the LS weak form is equivalent to the original
SAAF weak form. In general, the LS weak form does not have local and global balance. This would destroy the
super convergence of k-effective relying on this feature.

Table 3 Boundary condition type for LS schemes, c0 being a constant positive value.

Type Expression of cg

1 c0
2 c0Σt,g
3 c0(3

∣∣~Ω ·~n∣∣+ 2)
4 c0(1 + Σt,g)

(
3
∣∣~Ω ·~n∣∣+ 2

)
5 c0(4 1

h + Σt,g)(3
∣∣~Ω ·~n∣∣+ 2)

6 h0 = min
(

4, max
(

c0, Velem
Aelem,BC

))
c0(4 1

h0
+ Σt,g(3

∣∣~Ω ·~n∣∣+ 2))
7 c0τ−1

g

The weighted least-squares (WLS) transport equation addresses some issues of the unweighted LS equation on
material interfaces and in voids. Due to the second order nature of the LS equation, downstream information can
influence the upstream solution. An optically thick material further downstream in the current direction reduces
the flux in the unweighted LS. Therefore the LS equation does not have causality. The introduction of a weight
function diminishes this problem significantly. We denote a weight function as

W ≡


W1(~x, t)
W2(~x, t)

...
WG(~x, t)

 .

And WLS weak form becomes

bWLS (Ψ
∗, Ψ) ≡ (LΨ∗, WLΨ) + 〈cΨ∗, WΨ〉−

+

(
LΨ∗, W

∂

∂t

(
Ψ

v

))
− (LΨ∗, WSΨ)− 〈cΨ∗, WBΨ〉− , (108)

lWLS (Ψ
∗) ≡

〈
cΨ∗, WΨinc

b

〉−
+
(
LΨ∗, WQext) . (109)
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If W is equal to I, we retrieve the original LS form. Ref. [49] proposes the following weight function:

Wg(~x, t) = min(
1

Σt,g
, wmax), g = 1, · · · , G, (110)

where wmax is a preset maximum value to make the weight function well-defined over void or near-void. The
default value of wmax is 1000cm.

3.3.4 DFEM

We first define

a±(~x, ~Ω) ≡ lim
s→0±

a(~x + s~Ω, ~Ω), (111a)

[[[a(~x, ~Ω)]]] ≡a+(~x, ~Ω)− a−(~x, ~Ω), (111b)

where a is a generic function having both spatial and angular dependency. The jump [[[a(~x, ~Ω)]]] of a on internal
sides Γint are not necessarily zero with DFEM. We use the subscripts ± to differentiate this definition based on the
streaming direction ~Ω from the other one appearing in DFEM-Diffusion and upwinding interface condition based
on the face normal~n.

With DFEM, the stabilization is usually achieved with upwinding, i.e. the numerical angular flux on all interior
sides are using the upwinding flux with respect to the streaming direction ~Ω. This results into the following form

b (Ψ∗, Ψ) ≡
(

Ψ∗,
∂

∂t

(
Ψ

v

))
+ (L∗Ψ∗, Ψ) + 〈Ψ∗, Ψ〉+ − 〈[[[Ψ∗]]], Ψ−〉Γint

− 〈Ψ∗,BΨ〉− − (Ψ∗,SΨ) , (112)

l (Ψ∗) ≡
〈

Ψ∗, Ψinc
b

〉−
+
(
Ψ∗, Qext) . (113)

A desirable feature of the DFEM weak forms is that the mathematical adjoint weak form is identical with that of the
physical adjoint. In addition, both local and global balances are preserved.

3.4 Angular discretization and final weak forms

3.4.1 Angular discretization

The SN method can be thought of as a collocation method for the angular discretization. Given an angular quadra-
ture set

{
~Ωd, wd, d = 1, · · · , Nd

}
consisting of Nd directions ~Ωd and weights wd, transport equations are solved

along these directions and all angular integrations in the kernels are numerically evaluated with the angular quadra-
ture. The available angular quadratures in Rattlesnake are given in Appendix E. Angular derivative terms like those
in curvilinear coordinates need special requirements on the angular quadrature with SN methods. The reflecting
directions on reflecting boundaries of all directions in the angular quadrature need also be therein. Otherwise an-
gular interpolation schemes need to be provided by the angular quadrature for evaluating the angular fluxes in the
reflected directions. The primal variables to be solved for with SN method are Ψg,n, n = 1, · · · , M; g = 1, · · · , G.

The PN method is a spectral Galerkin FEM method in angle with the basis and test functions being the spherical
harmonics defined on 2D unit sphere. More specifically ,the angular fluxes are expanded with spherical harmonics
truncated to an order L, often referred to as the PN order. Boundary conditions require the proper rotation of spher-
ical harmonics on boundaries where the unit outward normal is not aligned with the axis defining the polar angle.
The primal variables to be solved for with the PN method are Φg,`,m, m = lowm(`), · · · , upm(`); ` = 0, · · · , L; g =
1, · · · , G, where two functions for upper and lower bounds depending on ` are

lowm(`) =

 0, 1D
0, 2D
−`, 3D

, (114)
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upm(`) =

 0, 1D
`, 2D
`, 3D

. (115)

Thus the number of primal variables is

N (L) =


L + 1, 1D
1
2 (L + 1)(L + 2), 2D
(L + 1)2, 3D

(116)

times G. We often use a single index to loop through spherical harmonics for simpler notation:

N (L)

∑
p=1

(·) =
L

∑
`=0

upm(`)

∑
m=lowm(`)

(·). (117)

The conversion from (`, m) to p and is

p(`, m) =


`+ 1 , 1D
`(`+ 1)/2 + m + 1 , 2D
`2 + `+ m + 1 , 3D

. (118)

It is noted that N (L) = p(L, L).

For even-parity PN , the primal variables are Φg,`,m, m = lowm(`), · · · , upm(`); ` ≤ L and even; g = 1, · · · , G.
Accordingly, the number of primal variables is

Ne(L) =


1
2 (L + 1), 1D
1
4 (L + 1)2, 2D
1
2 L(L + 1), 3D

(119)

times G, where L is an odd number.

The diffusion approximation is a special case of the PN method and discussed in Section 3.5. It can be show that
SAAF-P0 without anisotropic scattering is the diffusion equation with the diffusion coefficient being defined as
Dg = 1

3Σt,g
. The connection between diffusion and transport can be clearly revealed in the NDA section.

The following six subsections – each dedicated to a particular discretization scheme – are arranged with the same
subsections. The first subsection describes the kernels of the steady-state CTE. The second subsection is for the
boundary conditions. The third shows the time derivative kernel for transient calculations. The fourth contains
the kernels for neutron transport. The fifth describes kernels for thermal radiation transport. Extra kernels for R-
spherical and RZ (axial-symmetric) coordinates are in the next two subsections. Kernels for mathematical adjoint
are at the end. The last subsection summarizes all kernels, auxiliary kernels, BCs, auxiliary materials, etc. into
tables. Not all capabilities are supported by all schemes at the moment. The capability matrix is showed in Table 4.

Table 4 The capability of schemes.

Thermal Mathematical
Scheme Neutron radiation Transient R-spherical RZ adjoint Multi-scheme

CFEM-Diffusion Y Y Y Y Y Y Y
DFEM-Diffusion Y N Y Y Y N N
SAAF-CFEM-SN Y Y Y Y Y Y Y
SAAF-CFEM-PN Y N Y N Y N Y

LS-CFEM-SN Y N Y N N N N
LS-CFEM-PN Y N N N N N N

DFEM-SN Y N Y N Y Y N
DFEM-PN N Y Y N N N N
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3.4.2 SAAF-CFEM-SN

We will expand all the kernels in order to make a direct correspondence to the code.

3.4.2.1 Steady-state CTE

Streaming kernel:

(L1Ψ∗, (τL1 − I+ τL2)Ψ) =
G

∑
g=1

∫
S

dΩ
(
~Ω · ~∇Ψ∗g, τg~Ω · ~∇Ψg − (1− τgΣt,g)Ψg

)
D

=
G

∑
g=1

Nd

∑
d=1

(
~Ωd · ~∇Ψ∗g,d, τg~Ωd · ~∇Ψg,d − (1− τgΣt,g)Ψg,d

)
D

(120)

Collision kernel:

(Ψ∗,L2Ψ) =
G

∑
g=1

∫
S

dΩ
(

Ψ∗g, Σt,gΨg

)
D
=

G

∑
g=1

Nd

∑
d=1

wd

(
Ψ∗g,d, Σt,gΨg,d

)
D

(121)

Rattlesnake provides two treatments of the scattering kernels. One is the PN treatment:

((I+ τL1)Ψ
∗,SΨ) =

G

∑
g=1

∫
S

dΩ

Ψ∗g + τg~Ω · ~∇Ψ∗g,
G

∑
g′=1

L

∑
`=0

Σg′→g
s,`

`

∑
m=−`

Φg,`,mR`,m


D

=
G

∑
g=1

Nd

∑
d=1

wn

G

∑
g′=1

(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d,

L

∑
`=0

Σg′→g
s,`

`

∑
m=−`

Φg′ ,`,mR`,m(~Ωd)

)
D

=
G

∑
g=1

Nd

∑
d=1

wn

(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d,

L

∑
`=0

`

∑
m=−`

Sg,`,mR`,m(~Ωd)

)
D

(122)

with

Φg′ ,`,m =
Nd

∑
d=1

wdY`,m(~Ωd)Ψg′ ,d, (123)

and

Sg,`,m =
G

∑
g′=1

Σg′→g
s,` Φg′ ,`,m. (124)

The other is the direct SN treatment:

((I+ τL1)Ψ
∗,SΨ) =

G

∑
g=1

∫
S

dΩ

Ψ∗g + τg~Ω · ~∇Ψ∗g,
G

∑
g′=1

∫
S

Σs,g′→g fg′→g(~Ω
′ · ~Ω)Ψg′(~Ω

′) dΩ′


D

=
G

∑
g=1

Nd

∑
d=1

wd

G

∑
g′=1

(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d, Σs,g′→g

Nd

∑
d′=1

fg′→g,d′→dΨg′ ,d′

)
D

, (125)

where

fg′→g,d′→d =

{
wd′ fg′→g(~Ωd′ · ~Ωd), sampling method∫

Pd′
fg′→g(~Ω′ · ~Ωd) dΩ′, patch method

. (126)

The patch method requires the angular quadrature to build the patches on the 2D unit sphere for all the directions.
The external source kernel:(

(I+ τL1)Ψ
∗, Qext) = G

∑
g=1

∫
S

dΩ
(

Ψ∗g + τg~Ω · ~∇Ψ∗g, Qext
g

)
D
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=
G

∑
g=1

Nd

∑
d=1

wd

(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d, Qext

g (~Ωd)
)
D

. (127)

3.4.2.2 Boundary conditions

Vacuum boundary conditions:

〈Ψ∗, Ψ̄〉+∂Ds
− 〈Ψ∗, Ψ̄〉−∂Ds

=
G

∑
g=1

Nd

∑
d=1

wd

(
Ψ∗g,d, ~Ωd ·~nbΨ̄g,d,vacuum

)
∂Ds

, (128)

where numerical angular flux Ψ̄g,n is

Ψ̄g,d,vacuum =




Ψg,d, SAAF or PE
Ψg,d + Ψg,dreverse −Ψinc

g,dreverse
, EVEN

Ψg,d −Ψg,dreverse + Ψinc
g,dreverse

, ODD
, ~Ωd ·~nb > 0,~x ∈ ∂Ds{

Ψinc
g,d, SAAF, EVEN or ODD

2Ψinc
g,d −Ψg,d, PE

, ~Ωd ·~nb < 0,~x ∈ ∂Ds

, (129)

where dreverse stands for the direction index such that ~Ωdreverse = −~Ωd. Angular quadratures typically have both the
direction and its reverse in the set.

Reflecting boundary conditions:

〈Ψ∗, Ψ̄〉+∂Dr
− 〈Ψ∗, Ψ̄〉−∂Dr

=
G

∑
g=1

Nd

∑
d=1

wd

(
Ψ∗g,d, ~Ωd ·~nbΨ̄g,d,reflecting

)
∂Dr

, (130)

Ψ̄g,d,reflecting =




Ψg,d, SAAF

Ψg,d −
Ψg,d−Ψg,dreflecting

2 , NSYM

Ψg,d +
Ψg,d−Ψg,dreflecting

2 , SYM

, ~Ωd ·~nb > 0,~x ∈ ∂Dr

{
Ψg,dreflecting

, SAAF

−
Ψg,d+Ψg,dreflecting

2 , NSYM or SYM
, ~Ωd ·~nb < 0,~x ∈ ∂Dr

, (131)

where dreflecting stands for the direction index such that ~Ωdreflecting
= ~Ωd − 2(~Ωd ·~nb)~nb. Special care is needed to

make sure angular quadratures contains the reflecting directions for all boundary normals if the angular interpola-
tion scheme is not available.

White boundary conditions currently only have one option:

〈Ψ∗, Ψ〉+∂Dw
− 〈Ψ∗,BwΨ〉−∂Dw

=
G

∑
g=1

 ∑
~Ωd ·~nb>0

wd

(
Ψ∗g,d, ~Ωd ·~nbΨg,d

)
∂Dw

+ ∑
~Ωd ·~nb<0

wd

(
Ψ∗g,d, ~Ωd ·~nb

Jout

Whalf(~nb)

)
∂Dw

 , (132)

where

Jout = ∑
~Ωd ·~nb>0

wd~Ωd ·~nbΨg,d, (133)

Whalf(~nb) = ∑
~Ωd ·~nb>0

wd~Ωd ·~nb. (134)

It is noted that the half weighting Whalf(~nb) depends on~nb and is not exactly equal to π
4 , the analytical integration.

Whalf(~nb) are provided by the angular quadratures.
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3.4.2.3 Transient kernel

Time derivative kernel:(
(I+ τL1)Ψ

∗,
∂

∂t

(
Ψ

v

))
=

G

∑
g=1

∫
S

dΩ
(

Ψ∗g + τg~Ω · ~∇Ψ∗g,
∂

∂t

(
Ψg

vg

))
D

=
G

∑
g=1

Nd

∑
d=1

wd

(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d,

∂

∂t

(Ψg,d

vg

))
D

. (135)

If we assume vg, g = 1, · · · , G is time independent, the kernel can be simplified into

G

∑
g=1

Nd

∑
d=1

wd

(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d,

1
vg

∂Ψg,d

∂t

)
D

. (136)

3.4.2.4 Neutron

Prompt fission kernel:

((I+ τL1)Ψ
∗,FΨ) =

G

∑
g=1

∫
S

dΩ

Ψ∗g + τg~Ω · ~∇Ψ∗g,
1

4π

χ̄g

k

G

∑
g′=1

νΣf,g′

∫
S

Ψg′(~Ω
′) dΩ′


D

=
G

∑
g=1

Nd

∑
d=1

wd

(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d,

1
4π

χ̄g

k
F
)
D

, (137)

where F is the isotropic fission source:

F =
G

∑
g′=1

νΣf,g′Φ
′
g. (138)

It is noted that for transients, χ̄g = χp,g(1− β) and for steady-state problems χ̄g = χg.

Delayed neutron kernel:

((I+ τL1)Ψ
∗,CC) =

G

∑
g=1

∫
S

dΩ

(
Ψ∗g + τg~Ω · ~∇Ψ∗g,

1
4π

1
k

I

∑
i=1

χd,g,iλiCi

)
D

=
G

∑
g=1

Nd

∑
d=1

wd

(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d,

1
4π

1
k

I

∑
i=1

χd,g,iλiCi

)
D

. (139)

The DNP equation does not have the spatial derivative term, so DNP concentrations are typically evaluated directly
as:

Ci(~x, t) =

 γiCi(~x, told) + (1− γi)
β
λi

F(~x, t), constant

γiCi(~x, told) +
(

1−γi
λi∆t − γi

)
βi
λi

F(~x, told) +
(

1− 1−γi
λi∆t

)
βi
λi

F(~x, t), linear
, (140a)

where

γi(λi∆t) =


1

1+λi∆t , backward Euler
2−λi∆t
2+λi∆t , Crank-Nicholson
e−λi∆t, exponential

. (140b)

We assume that both λi and βi do not change from told to t and define ∆t ≡ t− told. It is not surprising that the
backward Euler scheme will give the same equation for constant and linear approximation of the fission source
from told to t. It also noted that this equation is independent of the weak forms and the time integration schemes
in the transient solver. It is noted that Eq. (138) and Eq. (140a) are identical for other discretization schemes with
neutron transport.
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3.4.2.5 Thermal radiation

Planckian emission kernel:(
(I+ τL1)Ψ

∗,
1

4π
SBB(T)

)
=

G

∑
g=1

∫
S

dΩ
(

Ψ∗g + τg~Ω · ~∇Ψ∗g,
1

4π
SBB,g

)
D

=
G

∑
g=1

Nd

∑
d=1

wd

(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d,

1
4π

SBB,g

)
D

. (141)

SBB,g is defined by Eq. (62).

3.4.2.6 R-spherical coordinate

The extra kernel for R-spherical coordinate is:

((I+ τL1)Ψ
∗,EΨ) + (τL1Ψ∗,E2Ψ)

=
G

∑
g=1

∫
S

dΩ
{(

Ψ∗g + τg~Ω · ~∇Ψ∗g,
1
r

∂

∂µ

[
(1− µ2)Ψg

])
D
+

(
τg~Ω · ~∇Ψ∗g,

2
r

µΨg

)}
. (142)

Special care is needed with SN methods for evaluating ∂
∂µ

[
(1− µ2)Ψg

]
, which are explained in Section E.1.1. With

SN , the kernel becomes

G

∑
g=1

Nd

∑
d=1

wd

{(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d,

1
r

Nd

∑
d′=1

βd,d′Ψg,d′

)
D
+

(
τg~Ωd · ~∇Ψ∗g,d,

2
r

µdΨg,d

)}
, (143)

where the expression for β can be found in Section E.1.1. We keep the notation ~Ωd · ~∇Ψ∗g,d although in R-spherical

coordinate, it is simply equal to µd
∂Ψg,d

∂r . The Jacobian of this kernel must be evaluated for good linear convergence.
It is noted that the evaluation of µ-derivative may introduce dummy directions. Dummy here means that, although
the directions are in the angular quadrature, their weights for the angular integration are zero. Introduction of
dummy directions results into more primal variables and special care on their mathematical adjoint needs to be
taken. The scaling of dummy directions are set to a fixed non-zero value wdummy = ∑Nd

d=1 wd/Nd while the scaling
for other normal directions is wd.

3.4.2.7 RZ-axial symmetric coordinate

The extra kernel for RZ-axial symmetric coordinate is:

((I+ τL1)Ψ
∗,EΨ) + (τL1Ψ∗,E2Ψ) = (τL1Ψ∗, (E+ E2)Ψ) + (Ψ∗,EΨ)

=−
G

∑
g=1

∫
S

dΩ
{(

Ψ∗g + τg~Ω · ~∇Ψ∗g,
Ωθ

r
∂Ψg

∂ω

)
D
+

(
Ψ∗g,

Ωr

r
Ψg

)}
,

=−
G

∑
g=1

Nd

∑
d=1

wd

{(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d,

1
r

N

∑
d′=1

αd,d′Ψg,d′

)
D
+

(
Ψ∗g,d,

Ωr,d

r
Ψg,d

)}
, (144)

where the expression for α can be found in the appendix (see Eq. (555)).

3.4.2.8 Mathematical adjoint

It is noted again that for the mathematical adjoint kernels, Ψ∗g,n is the solution and Ψg,n is a member of the test space.
Streaming term for the SAAF mathematical adjoint equations implemented in SAAFAdjointStreaming:

(L1Ψ∗, (τ (L1 − L2)Ψ)− (Ψ∗,L1Ψ) =
G

∑
g=1

Nd

∑
d=1

wd

[(
τg~Ωd · ~∇Ψ∗g,d, ~Ωd · ~∇Ψg,d − Σt,gΨg,d

)
D
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−
(

Ψ∗g,d, ~Ωd · ~∇Ψg,d

)
D

]
(145)

The collision term is the same as for the forward SAAF-SN equations.

The mathematical adjoint scattering term for the SAAF equations is:

((I− τL1)Ψ
∗, S̄Ψ) = (S̄∗(I− τL1)Ψ

∗, Ψ)

=
G

∑
g=1

G

∑
g′=1

L

∑
`=0

`

∑
k=−`

2l + 1
4π

(
(−1)`Σg→g′

s,`

[
Φ∗g′ ,`,k + τg′~∇ · ~X∗g′ ,`,k

]
,

Nd

∑
d=1

wdΨg,dY`,k(−~Ωd)

)
D

, (146)

where

~X∗g,`,k =
Nd

∑
d=1

wd~ΩdY`,k(~Ωd)Ψ
∗
g,d. (147)

We define the adjoint fission source as:

F∗ = F∗0 − F∗1 , (148a)

F∗0 =
G

∑
g=1

χp,gΦ∗g, (148b)

F∗1 =
G

∑
g=1

τgχp,g~∇ ·~J∗g . (148c)

The fission term for the SAAF mathematical adjoint equations is:

((I− τL1)Ψ
∗,FΨ) = (F∗(I− τL1)Ψ

∗, Ψ) =
G

∑
g=1

1
4π

(
F∗, νΣf,g

Nd

∑
d=1

wdΨg,d

)
D

. (149)

The distributed source term in the SAAF equations is given by:

G

∑
g=1

Nd

∑
d=1

wd

Ls

∑
`=0

`

∑
k=−`

(
Q∗g,`,kY`,k(~Ωd), Ψg,d

)
D

, (150)

where Ls is the spherical harmonics expansion order of the source and Q∗g,`,k is the angular, adjoint source moment.

For derivation of mathematical adjoint kernels in curvilinear geometry, it is important to note that the integration
by parts performed in Eq. (98) introduces an extra term (Ψ∗,E2Ψ), which can be merged into Eq. (95) as

((I+ τL1)Ψ
∗, (E+ E2)Ψ) . (151)

It can then be expanded as

G

∑
g=1

Nd

∑
d=1

wd

(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d,

1
r

Nd

∑
d′=1

(βd,d′ + 2δd,d′µd)Ψg,d′

)
D

. (152)

We apply the math adjoint transform:

G

∑
g=1

Nd

∑
d=1

wd

(
Ψ∗g,d − τg~Ωd · ~∇Ψ∗g,d,

1
r

Nd

∑
d′=1

(βdreverse,d′reverse
− 2δd,d′µd)Ψg,d′

)
D

=
G

∑
g=1

Nd

∑
d′=1

wd′

(
Nd

∑
d=1

wd
wd′

(βdreverse,d′reverse
− 2δd,d′µd)(Ψ

∗
g,d − τg~Ωd · ~∇Ψ∗g,d),

1
r

Ψg,d′

)
D

=
G

∑
g=1

Nd

∑
d=1

wd

(
Nd

∑
d′=1

wd′

wd
(βd′reverse,dreverse

− 2δd,d′µd)(Ψ
∗
g,d′ − τg~Ωd′ · ~∇Ψ∗g,d′),

1
r

Ψg,d

)
D

. (153)
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When there are dummy directions, which are denoted by a set Dummy (the rest is denoted as Non-dummy), be-
cause angular fluxes in these directions do not contribute to the angular flux moments, extra terms are needed for
the special treatment of scattering and fission. The scattering term is

−
G

∑
g=1

G

∑
g′=1

∑
d∈Non-dummy

wd

 L

∑
`=0

`

∑
k=−`

Σg→g′

s,` R`,k(−~Ωd) ∑
d′∈Dummy

wdummyY`,k(−~Ωd′)(−τg′~Ωd′ · ~∇Ψ∗g′ ,d′ + Ψ∗g′ ,d′), Ψg,d


D

.

If we define

ΦDummy
g′ ,`,k = ∑

m∈Dummy
wdummyY`,k(−~Ωm)(−τg′~Ωm · ~∇Ψ∗g′ ,m + Ψ∗g′ ,m), (154)

Then the term can be simplified into

−
G

∑
g=1

G

∑
g′=1

∑
d∈Non-dummy

wd

(
L

∑
`=0

`

∑
k=−`

Σg→g′

s,` R`,k(−~Ωd)Φ
Dummy
g′ ,`,k , Ψg,d

)
D

. (155)

This dummy part represents a coupling of dummy angular fluxes to the normal fluxes in the math-adjoint equation.
Similarly, we can have the dummy part of the fission bilinear form

−
G

∑
g=1

∑
d∈Non-dummy

wd

 1
4π

G

∑
g′=1

χg′Φ
Dummy
g′ ,0,0 ,

1
k

νΣ f ,gΨg,d


D

. (156)

3.4.2.9 Summary of MOOSE objects

The MOOSE objects used by SAAF-CFEM-SN are listed in Table 5, Table 6, Table 7, Table 8 and Table 9.
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Table 5 SAAF-CFEM-SN kernels.

Kernel Type Jacobian(
~Ωd · ~∇Ψ∗g,d, τg~Ωd · ~∇Ψg,d − (1− τgΣt,g)Ψg,d

)
D

SAAFStreaming Y(
Ψ∗g,d, Σt,gΨg,d

)
D

Reaction Y(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d, ∑L

`=0 Σg′→g
s,` ∑`

m=−` Φg,`,mR`,m(~Ωd)
)
D

SAAFScattering Y(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d, ∑L

`=0 ∑`
m=−` Sg,`,mR`,m(~Ωd)

)
D

SAAFTotalScattering N(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d, Σs,g′→g ∑Nd

d′=1 fg′→g,d′→dΨg′ ,d′
)
D

SAAFPFScattering N(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d, Qext

g (~Ωd)
)
D

SAAFSource N/A(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d, 1

4π
χ̄g
k F
)
D

SAAFFission N(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d, 1

4π
1
k ∑I

i=1 χd,g,iλiCi

)
D

SAAFDelayedNeutron N(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d, 1

4π SBB,g

)
D

SAAFPlanck N(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d, 1

vg
∂
∂t Ψg,d

)
D

SAAFTimeDerivative Y(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d, 1

r ∑Nd
d′=1 βd,d′Ψg,d′

)
D
+
(

τg~Ωd · ~∇Ψ∗g,d, 2
r µdΨg,d

)
D

SAAFStreamingRSpherical Y(
Ψ∗g,d + τg~Ωd · ~∇Ψ∗g,d,− 1

r ∑Nd
d′=1 αd,d′Ψg,d′

)
D
−
(

Ψ∗g,d, Ωr,d
r Ψg,d

)
D

SAAFStreamingRZCylindrical Y(
τg~Ωd · ~∇Ψg,d − (1− Σt,gτg)Ψg,d, ~Ωd · ~∇Ψ∗g,d

)
D

SAAFAdjointStreaming Y(
Ψg,dR`,k(−~Ωd), (−1)`Σg→g′

s,`

[
Φ∗g′ ,`,k + τg′~∇ · ~X∗g′ ,`,m

])
D

SAAFAdjointScattering Da(
1

4π

νΣf,g
k F∗, Ψg,d

)
D

SAAFAdjointFission N(
Ψg,d, Q∗g,`,kR`,k(~Ωd)

)
D

SAAFAdjointSource N/A(
∑Nd

d′=0
wd′
wd

(βd′reverse,dreverse
− 2δd,d′µd)(Ψ∗g,d′ − τg~Ωd′ · ~∇Ψ∗g,d′),

1
r Ψg,d

)
D

SAAFStreamingRSphericalAdjoint Y(
∑L
`=0 ∑`

k=−` Σg→g′

s,` R`,k(−~Ωd)Φ
Dummy
g′ ,`,k , Ψg,d

)
D

SAAFScatteringRSphericalAdjoint N(
1

4π ∑G
g′=1 χg′Φ

Dummy
g′ ,0,0 , 1

k νΣf,gΨg,d

)
D

SAAFFissionRSphericalAdjoint N

a D means that only the diagonal part (within-group) is assembled.
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Table 6 SAAF-CFEM-SN kernels (continued).

Type Condition Number of kernels

SAAFStreaming Σt,g
a Nd × G

Reaction Σt,g Nd × G
SAAFScattering Σg′→g

s,` , ` = 0, · · · , L Nd × NNZb

SAAFTotalScattering Sg,`,m Nd × G
SAAFPFScattering fg′→g(µ0) Nd × NNZ

SAAFSource Qext
g Ns

c× Nd × G
SAAFFission χ̄g Nd × G

SAAFDelayedNeutron χd,g,i, i = 1, · · · , I Nd × G
SAAFPlanck Σt,g Nd × G

SAAFTimeDerivative vg Nd × G
SAAFStreamingRSpherical R-spherical, Σt,g Nd × G

SAAFStreamingRZCylindrical RZ-cylindrical, Σt,g Nd × G
SAAFAdjointStreaming Σt,g Nd × G
SAAFAdjointScattering Σg′→g

s,` , ` = 0, · · · , L Nd × NNZ
SAAFAdjointFission χ̄g Nd × G
SAAFAdjointSource Q∗g,l,k Nd × G×N (Ls)

SAAFStreamingRSphericalAdjoint R-spherical, Σt,g Nd × G
SAAFScatteringRSphericalAdjoint R-spherical, Σt,g, Ndummy 6= 0 Nnon-dummy × G

SAAFFissionRSphericalAdjoint R-spherical, Σt,g, Ndummy 6= 0 Nnon-dummy × G
a Means where Σt,g is available.
b Number of non-zeros in the scattering matrix, i.e. all (g′, g)s whose

Σs
g′→g =

{
Σg′→g

s,` , ∀` = 0, · · · , L
}
6= 0.

c Number of external source functions.

Table 7 SAAF-CFEM-SN boundary conditions.

Type Equation Number of BCs Jacobian

SNVacuum
(

Ψ∗g,n, ~Ω ·~nbΨ̄g,n

)
∂Ds

Ns
a× Nd × G Y

SNReflecting
(

Ψ∗g,n, ~Ω ·~nbΨ̄g,n

)
∂Dr

Nd × G Y

SNWhite ∑~Ω·~nb>0 wn

(
Ψ∗g,n, ~Ω ·~nbΨg,n

)
∂Dw

Nd × G Y

a Ns is the number of surface source transport functions. If there are no source
functions, it is equal to 1.

Table 8 SAAF-CFEM-SN auxiliary kernels.

Name Equation Type Number of kernels Condition

Angular flux moments (Φg,`,m) Eq. (123) FluxMoment N (Linput
a)× G D

Fission source (F) Eq. (138) MaterialFissionSource 1 νΣf,g, g = 1, · · · , G
DNP (Ci, i = 1, · · · , I) Eq. (140a) DelayedNeutronPrecursor I νΣf,g, g = 1, · · · , G

Adjoint fission source F∗1 Eq. (148a) AdjointFissionSource 1 νΣf,g, g = 1, · · · , G
a Linput is a user input. It thus can be used to truncate the scattering order when Linput < L or ask Rattlesnake to
evaluate more flux moments when Linput > L.
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Table 9 SAAF-CFEM-SN auxiliary materials.

Name Equation Type Number of materials Condition

τg Eq. (89) SAAFTau G Σt,g

Sg,`,m Eq. (124) SsrcMaterial N (L)× G Σg′→g
s,` , g′ = 1, · · · , G; g = 1, · · · , G

F Eq. (138) FsrcMaterial 1 νΣf,g, g = 1, · · · , G
Ci Eq. (140a) DNPMaterial I νΣf,g, g = 1, · · · , G
Jout Eq. (133) BoundaryCurrent G ∂Dw
F∗1 Eq. (148a) AdjointFsrcMaterial 1 νΣf,g, g = 1, · · · , G

3.4.3 SAAF-CFEM-PN

The angular discretization agnostic weak form is given in Section 3.3.2. Spherical harmonics definitions and nota-
tion can be found in Appendix B. In particular, matrix definitions are detailed in Section B.2. We further define:

Σs,g′→g = diag
{

Σg′→g
s,` , m = −`, ..., ` ; ` = 0, ..., N

}
, (157)

νΣf,g = diag
{

νΣf,gδ`,0 , m = −`, ..., ` ; ` = 0, ..., N
}

. (158)

We also define the vector of moments for the external source :

Qg ≡
∫
S

Qext
g RdΩ (159)

Furthermore, a globally conservative void treatment for the SAAF-PN method was developed based on [53]. The
weak formulation is very similar to that of the SAAF with the void treatment, initially developed for SN methods
in [46]. The difference lies in the definition of τ. We refer to this method as SAAF-CLS and it is constructed as a
hybrid method using the SAAF scheme in the non-void regions and the Conservative Least-Squares (CLS) scheme
in the void or near-void regions. The latter is a modified LS method which preserves global conservation by adding
a non-symmetric term to the weak form [53]. For the SAAF-CLS-PN method, we define the following material
property, instead of Eq. (89) (we add a hat to the notation to emphasize that they are different):

τ̂−1
g ≡

{
cg , ~x ∈ D0

Σt,g , ~x ∈ D1
, (160)

where cg is a constant, D0 is the void or near-void region and D1 = D \D0.

3.4.3.1 Steady-state CTE

Streaming kernel:

(L1Ψ∗, (τL1 − I+ τL2)Ψ)

=
G

∑
g=1

∫
S

dΩ
((

~Ω · ~∇Ψ∗g, τ̂g~Ω · ~∇Ψg

)
D
−
(
(1− τ̂gΣt,g)~Ω · ~∇Ψ∗g, Ψg

)
D

)
=

G

∑
g=1

(
~∇Φ∗g, τ̂g

~~H · ~∇Φg

)
D
−
(
(1− τ̂gΣt,g)~D · ~∇Φ∗g, Φg

)
D

=
G

∑
g=1

N
∑

p,p′=1

(
~∇Φ∗g,`,m, τ̂g

~~Hp,p′ · ~∇Φg,`′ ,m′
)
D
−
(
(1− τ̂gΣt,g)~Dp′ ,p · ~∇Φ∗g,`,m, Φg,`′ ,m′

)
D

. (161)

Collision kernel:

(Ψ∗,L2Ψ) =
G

∑
g=1

(
Φ∗g, Σt,gPΦg

)
D
=

G

∑
g=1

N
∑
p=1

(
Φ∗g,`,m, Σt,gPp,pΦg,`,m

)
D

. (162)
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Scattering kernel:

((I+ τL1)Ψ
∗,SΨ) =

G

∑
g=1

∫
S

dΩ

Ψ∗g + τ̂g~Ω · ~∇Ψ∗g,
G

∑
g′=1

L

∑
`=0

Σg′→g
s,`

`

∑
m=−`

Φg′ ,`,mR`,m


D

=
G

∑
g,g′=1

(
PΦ∗g + τ̂g~D · ~∇Φ∗g, Σs,g′→gΦg′

)
D

=
G

∑
g=1

N
∑

p,p′=1

Pp′ ,pΦ∗g,`,m + τ̂g~Dp′ ,p · ~∇Φ∗g,`,m ,
G

∑
g′=1

Σg′→g
s,`′ Φg′ ,`′ ,m′


D

. (163)

Source kernel:

(
(I+ τL1)Ψ

∗, Qext) = G

∑
g=1

(
PΦ∗g + τ̂g~D · ~∇Φ∗g, Qg

)
D

=
G

∑
g=1

N
∑

p,p′=1

(
Pp′ ,pΦ∗g,`,m + τ̂g~Dp′ ,p · ~∇Φ∗g,`,m , Qg,`′ ,m′

)
D

. (164)

3.4.3.2 Boundary conditions

Vacuum boundary conditions:

〈Ψ∗, Ψ〉+∂Ds
−
〈

Ψ∗, Ψinc
〉−

∂Ds
=

G

∑
g=1

(
Φ∗g, L+Φg

)
∂Ds
−
(

Φ∗g, L−Φinc
g

)
∂Ds

(165)

=
G

∑
g=1

N
∑

p,p′=1

(
Φ∗g,`,m, L+

p,p′Φg,`′ ,m′
)

∂Ds
−
(

Φ∗g,`,m, L−p,p′Φ
inc
g,`′ ,m′

)
∂Ds

. (166)

Several options are available for L+ and L−, as described in Section B.3.

Reflecting boundary conditions:

〈Ψ∗, Ψ〉+∂Dr
− 〈Ψ∗, Ψr〉−∂Dr

=
G

∑
g=1

(
Φ∗g, N+Φg

)
∂Dr

=
G

∑
g=1

N
∑

p,p′=1

(
Φ∗g,`,m, N+

p,p′Φg,`′ ,m′
)

∂Dr
. (167)

Several options are available for N+, as described in Section B.3.

White boundary conditions are currently not supported.

3.4.3.3 Transient kernel

Time-derivative kernel:(
(I+ τL1)Ψ

∗,
∂

∂t

(
Ψ

v

))
=

G

∑
g=1

(
PΦ∗g + τ̂g~D · ~∇Φ∗g,

∂

∂t
(

Φg

vg
)

)
D

=
G

∑
g=1

N
∑

p,p′=1

(
Pp′ ,pΦ∗g,`,m + τ̂g~Dp′ ,p · ~∇Φ∗g,`,m ,

∂

∂t
(

Φg,`′ ,m′

vg
)

)
D

. (168)

If we assume vg, g = 1, · · · , G is time independent, the kernel can be simplified into

G

∑
g=1

N
∑

p,p′=1

(
Pp′ ,pΦ∗g,`,m + τ̂g~Dp′ ,p · ~∇Φ∗g,`,m ,

1
vg

∂Φg,`′ ,m′

∂t

)
D

. (169)

53



3.4 Angular discretization and final weak forms Rattlesnake Theory Manual

3.4.3.4 Neutron

Prompt fission kernel:

((I+ τL1)Ψ
∗,FΨ) =

G

∑
g=1

∫
S

dΩ

Ψ∗g + τ̂g~Ω · ~∇Ψ∗g,
1

4π

χp,g

k

G

∑
g′=1

νΣf,g′

∫
S

Ψg′(~Ω
′) dΩ′


D

=
G

∑
g=1

(
PΦ∗g + τ̂g~D · ~∇Φ∗g ,

1
4π

χp,g

k
F
)
D

,

=
G

∑
g=1

N
∑
p=1

(
P0,pΦ∗g,`,m + τ̂g~D0,p · ~∇Φ∗g,`,m ,

1
4π

χp,g

k
F
)
D

, (170)

where the fission source F is defined by Eq. (138).

Delayed neutron kernel:

((I+ τL1)Φ
∗, DC) =

G

∑
g=1

∫
S

dΩ

(
Ψ∗g + τ̂g~Ω · ~∇Ψ∗g,

1
4π

1
k

I

∑
i=1

χd,g,iλiCi

)
D

=
G

∑
g=1

(
PΦ∗g + τ̂g~D · ~∇Φ∗g ,

1
4π

1
k

I

∑
i=1

χd,g,iλiCi

)
D

,

=
G

∑
g=1

N
∑
p=1

(
P0,pΦ∗g,`,m + τ̂g~D0,p · ~∇Φ∗g,`,m ,

1
4π

1
k

I

∑
i=1

χd,g,iλiCi

)
D

, (171)

where the DNP concentrations Ci are evaluated using Eq. (140a).

3.4.3.5 Thermal radiation

This weak form currently does not support thermal radiation.

3.4.3.6 R-spherical coordinate

This weak form currently does not support R-spherical coordinate.

3.4.3.7 RZ-cylindrical coordinate

The implementation of the SAAF-PN method in cylindrical geometries with axial symmetry relies on the ability
given by MOOSE to redefine the scalar products introduced by Eq. (66) to include the volumetric term 2πr as well
as to efficiently implement the additional cylindrical streaming terms given by Eq. (95) using a PN expansion. As a
reminder, Eq. (95) is

(L1Φ∗, τ(E + E2)Φ) + (Φ∗, EΦ) , (172)

which, in cylindrical coordinates with axial symmetry, becomes (see Table 52):

−
(
I+ τL1Φ∗,

Ωθ

r
∂Φ

∂ω

)
−
(

Φ∗,
Ωr

r
Φ

)
. (173)

We now define a few additional matrices and give the expression of the corresponding kernels. In the RZ case, the
direction ~Ω is characterized by the cosine µ of its polar angle and by its azimuthal angle ω, which are then also the
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angles used in the definition of the spherical harmonics (see Appendix B). Using the notation from Appendix C,
~Ω ≡ (Ωz, Ωr, Ωθ)

T ≡ (µ,
√

1− µ2 cos ω,
√

1− µ2 sin ω)T , we define the operator P using the following identities:

∂R
∂ω
≡ PR with

∂Rm
`

∂ω
= −mR−m

` . (174)

Then, the following matrices are being defined:

Dθ ≡
∫
S

ΩθR (PR)T dΩ , Dr ≡
∫
S

ΩrR RT dΩ, (175)

Hr,θ ≡
∫
S

ΩrΩθR (PR)T dΩ , Hz,θ ≡
∫
S

ΩzΩθR (PR)T dΩ, (176)

~Hθ ≡ (Hr,θ , Hz,θ)
T . (177)

The additional kernels are thus given by:

−
G

∑
g=1

((
∂Φ∗g
∂r

,
τ̂g

r
Hr,θΦg

)
D
+

(
∂Φ∗g
∂z

,
τ̂g

r
Hz,θΦg

)
D
+

(
Φ∗g,

1
r
(Dr + Dθ)Φg

)
D

)

= −
G

∑
g=1

((
~∇Φ∗g,

τ̂g

r
~HθΦg

)
D
+

(
Φ∗g,

1
r
(Dr + Dθ)Φg

)
D

)

= −
G

∑
g=1

N
∑

p,p′=1

((
~∇Φ∗g,`,m ,

τ̂g

r
~Hθ,p,p′Φg,`′ ,m′

)
D
+

(
Φ∗g,`,m,

1
r
(Dr,p,p′ + Dθ,p,p′)Φg,`′ ,m′

)
D

)
. (178)

3.4.3.8 Mathematical adjoint

This weak form currently does not support math adjoint.

3.4.3.9 Summary of MOOSE objects

The MOOSE objects used by SAAF-CFEM-PN are listed in Table 10, Table 11, Table 12, Table 13 and Table 14.
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Table 10 SAAF-CFEM-PN kernels.

Kernel Type Jacobian(
~∇Φ∗g,`,m , τ̂g

~~Hp,p · ~∇Φg,`,m

)
D

SAAFPNStreaminga Y(
~∇Φ∗g,`,m , τ̂g

~~Hp,p′ · ~∇Φg,`′ ,m′
)
D

SAAFPNCouplingStreamingb Y(
(1− τ̂gΣt,g)~Dp′ ,p · ~∇Φ∗g,`,m , Φg,`′ ,m′

)
D

SAAFPNStreamingAsymmetric Y(
Φ∗g,`,m , Σt,gPp,pΦg,`,m

)
D

SAAFPNRemoval Y(
Pp′ ,pΦ∗g,`,m + τ̂g~Dp′ ,p · ~∇Φ∗g,`,m , ∑G

g′=1 Σg′→g
s,`′ Φg′ ,`′ ,m′

)
D

SAAFPNScattering Y(
Pp′ ,pΦ∗g,`,m + τ̂g~Dp′ ,p · ~∇Φ∗g,`,m , Qg,`′ ,m′

)
D

SAAFPNSource N/A(
P0,pΦ∗g,`,m + τ̂g~D0,p · ~∇Φ∗g,`,m , 1

4π
χp,g

k F
)
D

SAAFPNFission Y(
P0,pΦ∗g,`,m + τ̂g~D0,p · ~∇Φ∗g,`,m , 1

4π
1
k ∑I

i=1 χd,g,iλiCi

)
D

SAAFPNDelayedNeutronMat N(
Pp′ ,pΦ∗g,`,m + τ̂g~Dp′ ,p · ~∇Φ∗g,`,m , 1

vg

∂Φg,`′ ,m′
∂t

)
D

SAAFPNTimeDerivative Y

−
(
~∇Φ∗g,`,m , τ̂g

r
~Hθ,p,p′Φg,`′ ,m′

)
D

SAAFPNStreamingRZCylindricala Y

−
(
~∇Φ∗g,`,m ,

τ̂g

r
~Hθ,p,p′Φg,`′ ,m′

)
D

−
(

Φ∗g,`,m,
1
r
(Dr,p,p′ + Dθ,p,p′)Φg,`′ ,m′

)
D

SAAFPNCouplingStreamingRZCylindricalb Y

a Only the terms such that p = p′ (i.e. (`, m) = (`′, m′)) are included in this kernel.
b Only the terms such that p 6= p′ (i.e. (`, m) 6= (`′, m′)) are included in this kernel.

Table 11 SAAF-CFEM-PN kernels (continued).

Type Condition Number of kernels

SAAFPNStreaming Σt,g
a N × G

SAAFPNCouplingStreaming Σt,g N1
b× G

SAAFPNStreamingAsymmetric void treatment, Σt,g N2
c× G

SAAFPNRemoval Σt,g N × G
SAAFPNScattering Sg,`,m N × G× (L + 1)

SAAFPNSource Qext
g N d× G

SAAFPNFission χ̄g N × G
SAAFPNDelayedNeutronMat χd,g,i, i = 1, · · · , I N × G

SAAFPNTimeDerivative vg N × G
SAAFPNStreamingRZCylindrical RZ-cylindrical, Σt,g N × G

SAAFPNCouplingStreamingRZCylindrical RZ-cylindrical, Σt,g N4
e× G

a Means where Σt,g is available.
b Number of non-zero elements in the set {Hp,p′ ; p, p′ ∈ {1, · · · ,N}, p 6= p′}.
c Number of non-zero elements in the set {~Dp,p′ ; p, p′ ∈ {1, · · · ,N}, p 6= p′}.
d At the moment, only isotropic sources are available.
e Number of non-zero elements in the set {(p, p′) ∈ {1, · · · ,N}2; ||~Hθ,p,p′ || 6=
0 or (Dr + Dθ)p,p′ 6= 0}.
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Table 12 SAAF-CFEM-PN boundary conditions.

Equation Type Number of kernels Jacobian〈
Φg,`,m, ∑p′ L

+
p,p′Φg,`′ ,m′ − L−p,p′Φ

inc
g,`′ ,m′

〉
∂Ds

SAAFPNVacuumBC N × G× Ns
a Y〈

Φg,`,m, ∑p′ N
+
p,p′Φg,`′ ,m′

〉
∂Dr

SAAFPNReflectingBC N × G Y

a Ns is the number of source transport functions. If there are no source functions, it is equal to 1.

Table 13 SAAF-CFEM-PN auxiliary kernels.

Name Equation Type Number of kernels Condition

Fission source (F) Eq. (138) MaterialFissionSource 1 νΣf,g, g = 1, · · · , G
DNP (Ci, i = 1, · · · , I) Eq. (140a) DelayedNeutronPrecursor I νΣf,g, g = 1, · · · , G

Table 14 SAAF-CFEM-PN auxiliary materials.

Name Type Number of kernels Condition

τ̂−1
g SAAFCLSTauInv G D0

Sg,`,m SsrcMaterial N (L)× G Σg′→g
s,` , g′ = 1, · · · , G; g = 1, · · · , G

F FsrcMaterial 1 νΣf,g, g = 1, · · · , G
Ci DNPMaterial I νΣf,g, g = 1, · · · , G

Table 15 SAAF-CFEM-PN userobjects. Refer to Section B.3 for the matrix definitions.

Content Type

L+ LMatrixOnSide
L− LMinusMatrixOnSide
N+ NMatrixOnSide
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3.4.4 LS-CFEM-SN

We will expand all the kernels in order to make a direct correspondence to the code.

3.4.4.1 Steady-state CTE

Streaming kernel:

(WL1Ψ∗,LΨ) =
G

∑
g=1

∫
S

dΩ
(

Wg~Ω · ~∇Ψ∗g, ~Ω · ~∇Ψg + Σt,gΨg

)
D

=
G

∑
g=1

Nd

∑
d=1

(
Wg~Ωd · ~∇Ψ∗g,d, ~Ωd · ~∇Ψg,d + Σt,gΨg,d

)
D

. (179)

Collision kernel:

(WL2Ψ∗,LΨ) =
G

∑
g=1

∫
S

dΩ
(

WgΣt,gΨ∗g, ~Ω · ~∇Ψg + Σt,gΨg

)
D

=
G

∑
g=1

Nd

∑
d=1

(
WgΣt,gΨ∗g,d, ~Ωd · ~∇Ψg,d + Σt,gΨg,d

)
D

. (180)

Scattering kernel:

(LΨ∗, WSΨ) =
G

∑
g=1

∫
S

dΩ

Σt,gΨ∗g + ~Ω · ~∇Ψ∗g, Wg

G

∑
g′=1

L

∑
`=0

Σg′→g
s,`

`

∑
m=−`

Φg,`,mR`,m


D

=
G

∑
g=1

Nd

∑
d=1

wd

G

∑
g′=1

(
Σt,gΨ∗g,d +

~Ωd · ~∇Ψ∗g,d, Wg

L

∑
`=0

Σg′→g
s,`

`

∑
m=−`

Φg′ ,`,mR`,m(~Ωd)

)
D

=
G

∑
g=1

Nd

∑
d=1

wd

(
Σt,gΨ∗g,d +

~Ωd · ~∇Ψ∗g,d, Wg

L

∑
`=0

`

∑
m=−`

Sg,`,mR`,m(~Ωd)

)
D

. (181)

with Φg′ ,`,m and Sg,`,m being respectively defined by Eq. (123) and Eq. (124).

External source kernel:

(
LΨ∗, WQext) = G

∑
g=1

∫
S

dΩ
(

Σt,gΨ∗g + ~Ω · ~∇Ψ∗g, WgQext
g

)
D

=
G

∑
g=1

Nd

∑
d=1

wd

(
Σt,gΨ∗g,d +

~Ωd · ~∇Ψ∗g,d, WgQext
g (~Ωd)

)
D

. (182)

3.4.4.2 Boundary conditions

This scheme supports two kind of boundary conditions: nodal (i.e. strongly imposed) and integrated (weakly im-
posed) boundary conditions.

Nodal vacuum boundary conditions: this imposes the following condition at each corresponding boundary node
and each direction index n such that ~Ωd ·~nb < 0

Ψg,d = Ψinc
g,d. (183)
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Nodal reflecting boundary conditions: this imposes the following condition at each corresponding boundary node
and each direction index n such that ~Ωd ·~nb < 0

Ψg,d = Ψg,dreflecting
(184)

with ~Ωdreflecting
= ~Ωd − 2(~Ωd ·~nb)~nb.

The other boundary conditions are weakly imposed and in particular involve the variable c whose different possible
values are summarized in Table 3.

Integrated vacuum boundary conditions:

〈
cΨ∗, Ψ−Ψinc

〉−
∂Ds

=
G

∑
g=1

∑
~Ωd ·~nb<0

wd

(
Ψ∗g,d, cg(~Ωd)|~Ωd ·~nb|(Ψg,d −Ψinc

g,d)
)

∂Ds
, (185)

Integrated reflecting boundary conditions:

〈
cΨ∗, Ψ−Ψ(~Ωr)

〉−
∂Dr

=
G

∑
g=1

∑
~Ωd ·~nb<0

wd

(
Ψ∗g,d, cg(~Ωd)|~Ωd ·~nb|(Ψg,d −Ψg,d,reflecting)

)
∂Dr

, (186)

with ~Ωdreflecting
= ~Ωd − 2(~Ωd ·~nb)~nb.

3.4.4.3 Transient kernel

This weak form currently does not support time-dependent problems.

3.4.4.4 Neutron

Prompt fission kernel:

(LΨ∗, WFΨ) =
G

∑
g=1

∫
S

dΩ

Σt,gΨ∗g + ~Ω · ~∇Ψ∗g,
Wg

4π

χ̄g

k

G

∑
g′=1

νΣf,g′

∫
S

Ψg′(~Ω
′) dΩ′


D

=
G

∑
g=1

Nd

∑
d=1

wd

(
Σt,gΨ∗g,d +

~Ωd · ~∇Ψ∗g,d,
Wg

4π

χ̄g

k
F
)
D

, (187)

where F is defined by Eq. (138). Delayed neutron kernels are not implemented, which is required for transient
calculations.

3.4.4.5 Thermal radiation

This weak form currently does not support thermal radiation.

3.4.4.6 R-spherical coordinate

This weak form currently does not support R-spherical coordinate.

3.4.4.7 RZ-axial symmetric coordinate

This weak form currently does not support RZ coordinate.
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3.4.4.8 Mathematical adjoint

This weak form currently does not support mathematical adjoint.

3.4.4.9 Summary of MOOSE objects

The MOOSE objects used by LS-CFEM-SN are listed in Table 16, Table 17, Table 18, Table 19 and Table 20.

Table 16 LS-CFEM-SN kernels.

Kernel Type Jacobian(
Wg~Ωd · ~∇Ψ∗g,d, ~Ωd · ~∇Ψg,d + τgΣt,gΨg,d

)
D

LSStreaming Y(
WgΣt,gΨ∗g,d, ~Ωd · ~∇Ψg,d + Σt,gΨg,d

)
D

LSCollision Y(
Σt,gΨ∗g,d +

~Ωd · ~∇Ψ∗g,d, Wg ∑L
`=0 ∑`

m=−` Sg,`,mR`,m(~Ωd)
)
D

LSScattering Y(
Σt,gΨ∗g,d +

~Ωd · ~∇Ψ∗g,d, WgSext
g (~Ωd)

)
D

LSSource N/A(
Σt,gΨ∗g,d +

~Ωd · ~∇Ψ∗g,d, Wg
4π

χ̄g
k F
)
D

LSFission Y

Table 17 LS-CFEM-SN kernels (continued).

Type Condition Number of kernels

LSStreaming Σt,g
a N × G

LSCollision Σt,g N × G
LSScattering Σg′→g

s,` , ` = 0, · · · , L N × NNZb

LSSource Qext
g N × G

LSFission χ̄g N × G
a Means where Σt,g is available.
b Number of non-zeros in the scattering matrix, i.e. as
many (g′, g) such that

Σs
g′→g =

{
Σg′→g

s,` , ∀` = 0, · · · , L
}
6= 0.

Table 18 LS-CFEM-SN boundary conditions.

Type Equation Number of BCs Jacobian

LSIncFluxBC Ψg,n = Ψinc
g,n (nodal) N/A

LSReflectBC Ψg,n = Ψg,n,reflecting (nodal) N/A

LSIncFluxBC_Weak
(

Ψ∗g,n, cg(~Ωn)
|~Ωn ·~nb|−~Ωn ·~nb

2 (Ψg,n −Ψinc
g,n)
)

∂Ds
Ns

a× N × G Y

LSReflectBC_Weak
(

Ψ∗g,n, cg(~Ωn)
|~Ωn ·~nb|−~Ωn ·~nb

2 (Ψg,n −Ψg,n,reflecting)
)

∂Dr
N × G Y

a Ns is the number of source transport functions. If there are no source functions, it is equal to 1.
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Table 19 LS-CFEM-SN auxiliary kernels.

Name Equation Type Number of kernels Condition

Angular flux moments (Φg,`,m) Eq. (123) FluxMoment N (Linput
a)× G D

Fission source (F) Eq. (138) MaterialFissionSource 1 νΣf,g, g = 1, · · · , G
a Linput is a user input. It thus can be used to truncate the scattering order when Linput < L or ask Rattlesnake
to evaluate more flux moments when Linput > L.

Table 20 LS-CFEM-SN auxiliary materials.

Name Type Number of materials Condition

Wg LSWeight G Σt,g

Sg,`,m SsrcMaterial N (L)× G Σg′→g
s,` , g′ = 1, · · · , G; g = 1, · · · , G

F FsrcMaterial 1 νΣf,g, g = 1, · · · , G
Jout BoundaryCurrent G ∂Dw

3.4.5 LS-CFEM-PN

The angular discretization agnostic weak form is given in Section 3.4.5. Most notation used for the LS-PN weak
form can be found in Section 3.4.3 or Appendix B.

3.4.5.1 Steady-state CTE

Streaming kernel:

(WL1Ψ∗,L1Ψ) + (WL2Ψ∗,L1Ψ) + (WL1Ψ∗,L2Ψ)

=
G

∑
g=1

∫
S

dΩ
(

Wg~Ω · ~∇Ψ∗g, ~Ω · ~∇Ψg

)
D
+
∫
S

dΩ
(

WgΣt,gΨ∗g, ~Ω · ~∇Ψg

)
D
+
∫
S

dΩ
(

Wg~Ω · ~∇Ψ∗g, Σt,gΨg

)
D

=
G

∑
g=1

(
Wg~∇Φ∗g, ~~H · ~∇Φg

)
D
+
(

WgΣt,gΦ∗g, ~D · ~∇Φg

)
D
+
(

Wg~D · ~∇Φ∗g, Σt,gΦg

)
D

. (188)

Collision kernel:

(WL2Ψ∗,L2Ψ) =
G

∑
g=1

(
WgΣt,gΦ∗g, Σt,gPΦg

)
D

. (189)

Scattering kernel:

(LΨ∗, WSΨ) =
G

∑
g=1

∫
S

dΩ

Σt,gΨ∗g + ~Ω · ~∇Ψ∗g, Wg

G

∑
g′=1

L

∑
`=0

Σg′→g
s,`

`

∑
m=−`

Φg′ ,`,mR`,m


D

=
G

∑
g=1

(
Σt,gPΦ∗g + ~D · ~∇Φ∗g, WgΣs,g′→gΦg′

)
D

. (190)

Source kernel:

(
LΨ∗, WQext) = G

∑
g=1

(
Σt,gPΦ∗g + ~D · ~∇Φ∗g, WgQg

)
D

. (191)
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3.4.5.2 Boundary conditions

The boundary conditions are also fairly close to those presented in Section 3.4.3. The main difference is that the
boundary terms are weighted by a variable c as shown in Section 3.3.3. As a reminder, the boundary term is given
by: 〈

cΨ∗, Ψ−Ψinc − BΨ
〉−

, (192)

where the various options for c are given in Table 3. For the LS-CFEM-PN scheme, the default value is cg = τ−1
g

which was shown to be consistent with the SAAF scheme with a void treatment [54].

Vacuum boundary conditions:

〈
cΨ∗, Ψ−Ψinc

〉−
∂Ds

=
〈
cΦ∗, L−(Φ−Φinc)

〉
∂Ds

=
G

∑
g=1

N
∑

p,p′=1

〈
cgΦ∗g,`,m, L−p,p′(Φg,`′ ,m′ −Φinc

g,`′ ,m′)
〉

∂Ds
. (193)

Several options are available for L−, as described in Section B.3.

Reflecting boundary conditions:

〈cΨ∗, Ψ−Ψr〉−∂Dr
=
〈
Φ∗, cN−Φ

〉
∂Dr

=
G

∑
g=1

N
∑

p,p′=1

〈
Φ∗g,`,m, cgN−p,p′Φg,`′ ,m′

〉
∂Dr

. (194)

Several options are available for N−, as described in Section B.3

White boundary conditions are currently not available.

3.4.5.3 Transient kernel

This weak form currently does not support time-dependent problems.

3.4.5.4 Neutron

Prompt fission kernel:

G

∑
g=1

∫
S

dΩ

Σt,gΨ∗g + ~Ω · ~∇Ψ∗g,
Wg

4π

χp,g

k

G

∑
g′=1

νΣf,g′

∫
S

Ψg′(~Ω
′) dΩ′


=

G

∑
g=1

(
Σt,gPΦ∗g + ~D · ~∇Φ∗g ,

Wg

4π

χp,g

k
F
)
D

, (195)

where F is defined by Eq. (138). Delayed neutron kernels are not implemented, which is required for transient
calculations.

3.4.5.5 Thermal radiation

This weak form currently does not support thermal radiation.

3.4.5.6 R-spherical coordinate

This weak form currently does not support R-spherical coordinate.
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3.4.5.7 RZ-cylindrical coordinate

This weak form currently does not support RZ cylindrical coordinate.

3.4.5.8 Mathematical adjoint

This weak form currently does not support math adjoint.

3.4.5.9 Summary of MOOSE objects

The MOOSE objects used by LS-CFEM-SN are listed in Table 21, Table 22, Table 23, Table 24, Table 25 and Table 26.

Table 21 LS-CFEM-PN kernels.

Kernel Type(
~∇Φ∗g,`,m , Wg

~~Hp,p · ~∇Φg,`,m

)
D

LSPNStreaminga Y(
Wg~∇Φ∗g,`,m, ~~Hp,p′ · ~∇Φg,`′ ,m′

)
D
+(

WgΣt,gΦ∗g,`,m, ~Dp,p′ · ~∇Φg,`′ ,m′
)
D
+(

Wg~Dp′ ,p · ~∇Φ∗g,`,m, Σt,gΦg,`′ ,m′
)
D

LSPNCouplingStreamingb Y

(
Σt,gΦ∗g,`,m , WgΣt,gPp,pΦg,`,m

)
D

LSPNRemoval Y(
Σt,gPp′ ,pΦ∗g,`,m + ~Dp′ ,p · ~∇Φ∗g,`,m , Wg ∑G

g′=1 Σg′→g
s,`′ Φg′ ,`′ ,m′

)
D

LSPNScattering Y(
Σt,gPp′ ,pΦ∗g,`,m + ~Dp′ ,p · ~∇Φ∗g,`,m , WgQg,`′ ,m′

)
D

LSPNSource N/A(
Σt,gP0,pΦ∗g,`,m + ~D0,p · ~∇Φ∗g,`,m , Wg

4π
χp,g

k F
)
D

LSPNFission Dc

a Only diagonal terms (p = p′ i.e. (`, m) = (`′, m′)).
b Only off-diagonal terms (p 6= p′ i.e. (`, m) 6= (`′, m′)).
c Only the diagonal part (within-group) is assembled

Table 22 LS-CFEM-PN kernels (continued).

Type Condition Number of kernels

LSPNStreaming Σt,g
a N × G

LSPNCouplingStreaming Σt,g N1
b× G

LSPNRemoval Σt,g N × G
LSPNScattering Sg,`,m N × G× (L + 1)

LSPNSource Qext
g N c× G

LSPNFission χ̄g N × G
a Means where Σt,g is available.
b Number of non-zero elements in the set {(p, p′) ∈ {1, · · · ,N}2; ||Hp,p′ || >
0 or ||~Dp,p′ || > 0}.
c At the moment, only isotropic sources are available.
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Table 23 LS-CFEM-PN boundary conditions.

Equation Type Number of kernels Jacobian〈
cgΦg,`,m, ∑p′ L

−
p,p′(Φg,`′ ,m′ −Φinc

g,`′ ,m′)
〉

∂Ds
LSPNVacuumBC N × G× Ns

a Db〈
cgΦg,`,m, ∑p′ N

−
p,p′Φg,`′ ,m′

〉
∂Dr

LSPNReflectingBC N × G D

a Ns is the number of source transport functions. If there are no source functions, it is equal to 1.
b D means that only the diagonal part (within-group) is assembled.

Table 24 LS-CFEM-PN auxiliary kernels.

Name Equation Type Number of kernels Condition

Fission source (F) Eq. (138) MaterialFissionSource 1 νΣf,g, g = 1, · · · , G

Table 25 LS-CFEM-PN auxiliary materials.

Name Type Number of kernels Condition

Sg,`,m SsrcMaterial N (L)× G Σg′→g
s,` , g′ = 1, · · · , G; g = 1, · · · , G

F FsrcMaterial 1 νΣf,g, g = 1, · · · , G

Table 26 LS-CFEM-PN userobjects. Refer to Section B.3 for the matrix definitions.

Content Type

L− LMinusMatrixOnSide
N− NMinusMatrixOnSide

3.4.6 DFEM-SN

This section covers all kernels for the discontinuous FEM discretization of the first order SN equations.

3.4.6.1 The transport sweep

The DFEM-SN equations allow the matrix-free inversion of the streaming and collision operator given by the terms
(L∗Ψ∗, Ψ) + 〈Ψ∗, Ψ〉+ − 〈[[[Ψ∗]]], Ψ−〉Γint

using a transport sweep. It is recognized that the unknowns for a given
direction are not coupled to any other direction via the streaming and collision operator. In addition, elements’
unknowns for the same angular direction are only coupled to their upwind neighbors, i.e. neighbors in the direction
of −~Ω. Therefore, one can find a sequence in which elements can be swept such that for each element only a
small linear system of the size of the local degrees of freedom has to be solved. Performing a sweep through all
elements and angular directions completes a single transport sweep. A transport sweep is an extemely memory
and computing-time efficient algorithm for inverting the streaming and collision operator.

The element sweep order for each angular direction is determined using a breadth first search algorithm. The al-
gorithm relies on separating the faces of an element into inflow and outflow faces depending on the inner product
of the normal vector and ~Ω. Rattlesnake allows the elements’ faces to be curved such that the normal varies from
quadrature point to quadrature point creating the potential for a face to be both inflow and outflow face. For ob-
taining a unique ordering, Rattlesnake therefore uses the average norm over faces to determine the transport sweep
orders. Note that if there is a face that has both inflow and outflow quadrature point, the dependency graph of
the sweep is cyclic and no ordering exists that allows exact sweeping. Using the average normal over faces then
constitutes an approximation lagging fluxes at inflow quadrature points located on an outflow face [because the
neighboring element has not been swept yet]. Even in the absence of curved faces the sweep dependency graph
can be cyclic. In this case, the number of element’s dependencies currently on top of the queue in the breadth first
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search algorithm is set to zero. This means it is queued for solution despite some of its upstream neighbors not
being swept yet. In the Rattlesnake sweep implementation, significant angular fluxes including inflow quadrature
points on mixed inflow/outflow edges, reflective boundary conditions, and fluxes on severed dependency faces are
not saved between iterations. Before commencing the sweeps all angular fluxes are set to zero. In addition, reflec-
tive boundary influxes are zeroed out. In the particular Rattlesnake Richardson implementation, this guarantees
convergence to the right answer.

The sweep that is currently implemented assembles the local linear systems using quadrature rules. This allows an
exact treatment of curved surfaces and spatially varying cross sections. However, the current grind time, especially
in three-dimensional geometries precludes deployment for production calculations. The sweep can be used in a
Richardson type iteration scheme for solving fixed source problem, in the DFEM-SN based nonlinear diffusion
acceleration method using a sweep update executioner derived from Richardson executioner, and finally it can be
used to precondition a direct GMRES solve of the DFEM-SN problem.

The transport sweep can be executed in parallel. Currently spatial domain decomposition using a block Jacobi
iteration is implemented. The partition is identical to the partition provided by the selected MOOSE partitioner.

3.4.6.2 Steady-state CTE

Streaming and collision kernels:

(−L1Ψ∗, Ψ) =
G

∑
g=1

Nd

∑
d=1

wd

(
−~Ωd · ~∇Ψ∗g,d, Ψg,d

)
D

. (196)

Collision kernels:

(+L2Ψ∗, Ψ) =
G

∑
g=1

Nd

∑
d=1

wd

(
Σt,gΨ∗g,d, Ψg,d

)
D

. (197)

The scattering term:

(Ψ∗,SΨ) =
G

∑
g=1

G

∑
g′=1

Nd

∑
d=1

wd

(
Ψ∗g,d,

L

∑
`=0

`

∑
m=−`

Σg′→g
s,` Φg′ ,`,mR`,m(~Ωd)

)
D

=
G

∑
g=1

Nd

∑
d=1

wd

(
Ψ∗g,d,

L

∑
`=0

`

∑
m=−`

Sg,`,mR`,m(~Ωd)

)
D

, (198)

where Φg,`,m and Sg,`,m are defined in Eq. Eq. (123) and Eq. Eq. (124), respectively.

External source:

(Ψ∗, Q) =
G

∑
g=1

N

∑
n=1

wn

(
Ψ∗g,n, Qg(~Ωn)

)
D

. (199)

3.4.6.3 Interior face terms (DGKernel)

The interior face term:

〈[[[Ψ∗]]], Ψ−〉Γi
=

G

∑
g=1

Nd

∑
d=1

wd

〈
[[[Ψ∗g,d]]], Ψg,d,−

〉
Γi

, (200)

where Γi is the set of interior faces and [[[ f ]]] = f+ − f− is the jump across element faces with the upwind and
downwind sides being defined by ~Ωd.
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3.4.6.4 Transient

The time derivative kernel: (
Ψ∗,

1
v

∂Ψ

∂t

)
=

G

∑
g=1

Nd

∑
d=1

wd

(
Ψ∗g,d,

1
vg

∂Ψg,d

∂t

)
D

. (201)

3.4.6.5 Neutron

The prompt fission kernel:

(Ψ∗,FΨ) =
G

∑
g=1

Nd

∑
d=1

wd

(
Ψ∗g,d,

χp,g

4πk
F
)
D

. (202)

where F is defined by Eq. (138).

Delayed neutron kernel:

(Ψ∗, DC) =
G

∑
g=1

Nd

∑
d=1

wd

(
Ψ∗g,d,

1
4πk

I

∑
i=1

χd,g,iλiCi

)
D

, (203)

where the DNP concentrations Ci are evaluated using Eq. (140a).

3.4.6.6 Boundary Conditions

DFEM-SN boundary conditions are identical to the SAAF-SN-CFEM boundary condition.

3.4.6.7 Thermal radiation

DFEM-SN does not support thermal radiation.

3.4.6.8 R-spherical coordinate

DFEM-SN does not support R-spherical coordinate.

3.4.6.9 RZ-cylindrical coordinate

DFEM-SN does not support RZ-cylindrical coordinate.

3.4.6.10 Mathematical adjoint

For the DFEM-SN equations physical and mathematical adjoint are identical.

3.4.6.11 Summary of MOOSE objects

The MOOSE objects used by DFEM-SN are listed in Table 27 through Table 31.
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Table 27 DFEM-SN kernels and DG kernels.

Kernel Type Jacobian(
−~Ωd · ~∇Ψ∗g,d, Ψg,d

)
D

SNStreaming Y(
Σt,gΨ∗g,d, Ψg,d

)
D

Reaction Y(
Ψ∗g,d,

L
∑
`=0

`
∑

m=−`
Σg′→g

s,` Φg′ ,`,mR`,m(~Ωd)

)
D

SNScatteringa N(
Ψ∗g,d,

L
∑
`=0

`
∑

m=−`
Sg,`,mR`,m(~Ωd)

)
D

SNGroupScattering N(
Ψ∗g,d, Qg(~Ωd)

)
D

SNSource N/A〈
[[[Ψ∗g,d]]], Ψg,d,−

〉
Γi

Upwind Y(
Ψ∗g,d, 1

vg

∂Ψg,d
∂t

)
D

SpeedTimeDerivative Y(
Ψ∗g,d, χp,g

4πk F
)
D

SNFission Y(
Ψ∗g,d, 1

4πk

I
∑

i=1
χd,g,iλiCi

)
D

SNDelayedNeutronb N

a SNScattering is implemented for flux moments to be provided as AuxVari-
ables or Materials (SNScatteringMat).
b SNDelayedNeutronMat is identical except that it uses the precursors com-
puted as material.

Table 28 DFEM-SN kernels (continued).

Type Condition Number of kernels

SNStreaming Σt,g N × G
Reaction Σt,g N × G

SNScattering Σg′→g
s,` , ` = 0, · · · , L N × NNZa

SNGroupScattering Sg,`,m N × G
SNSource Qg N × G
Upwind none N × G

SpeedTimeDerivative vg N × G
SNFission χ̄g N × G

SNDelayedNeutron χd,g,i, i = 1, · · · , I N × G
a Number of non-zeros in the scattering matrix, i.e. all (g′, g)s

whose Σs
g′→g =

{
Σg′→g

s,` , ∀` = 0, · · · , L
}
6= 0.

Table 29 DFEM-SN boundary conditions.

Type Equation Number of BCs Jacobian

SNVacuum
(

Ψ∗g,n, ~Ω ·~nbΨ̄g,n

)
∂Ds

Ns
a× Nd × G Y

SNReflecting
(

Ψ∗g,n, ~Ω ·~nbΨ̄g,n

)
∂Dr

Nd × G Y

SNWhite ∑~Ω·~nb>0 wn

(
Ψ∗g,n, ~Ω ·~nbΨg,n

)
∂Dw

Nd × G Y

a Ns is the number of surface source transport functions. If there are no source
functions, it is equal to 1.
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Table 30 DFEM-SN auxiliary kernels.

Name Equation Type Number of kernels Condition

Angular flux moments (Φg,`,m) Eq. (123) FluxMoment N (Linput
a)× G D

Fission source (F) Eq. (138) MaterialFissionSource 1 νΣf,g, g = 1, · · · , G
DNP (Ci, i = 1, · · · , I) Eq. (140a) DelayedNeutronPrecursor I νΣf,g, g = 1, · · · , G

a Linput is a user input. It thus can be used to truncate the scattering order when Linput < L or ask Rattlesnake to
evaluate more flux moments when Linput > L.

Table 31 DFEM-SN auxiliary materials.

Name Equation Type Number of materials Condition

Sg,`,m Eq. (124) SsrcMaterial N (L)× G Σg′→g
s,` , g′ = 1, · · · , G; g = 1, · · · , G

F Eq. (138) FsrcMaterial 1 νΣf,g, g = 1, · · · , G
Ci Eq. (140a) DNPMaterial I νΣf,g, g = 1, · · · , G
Jout Eq. (133) BoundaryCurrent G ∂Dw

3.4.7 DFEM-PN

There are several ways to derive the DFEM–PN weak formulation. One of them is to apply the PN approximation
directly to the transport equation and then to apply the DFEM spatial discretization. This can be for instance found
in [55, 56, 57]. Here, we follow the logic of this manual (with the spatial discretization being applied prior to the
angular discretization) and will change the numerical flux appropriately to end up with the same formulation.
We therefore start with Eq. (112). As detailed in Appendix B, the PN method consists of expanding all angular
dependent in terms of the spherical harmonics up to degree N. Most terms in the weak formulation are pretty
straightforward to derive because of the orthogonality property of the spherical harmonics. We first describe the
volumetric kernels. Second, the boundary and interior facets (or interface) are explained. Third, we describe some
advanced features such as filtering capabilities and mass matrix lumping and present all the MOOSE objects specific
to this scheme. Finally, we explicit what the matrices for DFEM-P1 look like for better understanding.

3.4.7.1 Steady-state CTE

Streaming kernel:

(L∗1Ψ∗, Ψ) =
G

∑
g=1

∫
S

dΩ
(
−~Ω · ~∇Ψ∗g, Ψg

)
D
=

G

∑
g=1

N
∑

p,p′=1

(
−~Dp′ ,p · ~∇Φ∗g,`,m, Φg,`′ ,m′

)
D

. (204)

Collision kernel:

(L∗2Ψ∗, Ψ) =
G

∑
g=1

∫
S

dΩ
(

Σt,gΨ∗g, Ψg

)
D
=

G

∑
g=1

N
∑
p=1

(
Φ∗g,`,m , Σt,gPp,pΦg,`,m

)
D

. (205)

Scattering kernel:

(Ψ∗,SΨ) =
G

∑
g,g′=1

∫
S

dΩ

Ψ∗g,
G

∑
g′=1

L

∑
`=0

Σg′→g
s,`

`

∑
m=−`

Φg′ ,`,mR`,m


D

=
G

∑
g,g′=1

(
PΦ∗g, Σs,g′→gΦg′

)
D
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=
G

∑
g,g′=1

N
∑
p=1

(
Φ∗g,`,m , Pp,pΣg′→g

s,` Φg′ ,`,m

)
D

. (206)

Source kernel:

(
Ψ∗, Qext) = G

∑
g=1

∫
S

(
Ψ∗g, Qext

g

)
D

dΩ =
G

∑
g=1

N
∑
p=1

(
Φ∗g,`,m , Pp,pQg,`,m

)
D

. (207)

3.4.7.2 Transient kernel

Transient kernel: (
Ψ∗,

∂

∂t

(
Ψ

v

))
=

G

∑
g=1

N
∑
p=1

(
Φ∗g,`,m , Pp,p

∂

∂t

(Φg,`,m

vg

))
D

. (208)

If we assume vg, g = 1, · · · , G is time independent, the kernel can be simplified into

G

∑
g=1

N
∑
p=1

(
Φ∗g,`,m , Pp,p

1
vg

∂Φg,`′ ,m′

∂t

)
D

. (209)

3.4.7.3 Interior facets terms (DGKernel)

First, we recall the jump notations defined with respect to the direction ~Ω rather than to the normal vector ~n
in Eq. (111a):

a±(~x, ~Ω) ≡ lim
s→0±

a(~x + s~Ω, ~Ω),

[[[a(~x, ~Ω)]]] ≡a+(~x, ~Ω)− a−(~x, ~Ω),

and define the jump operator [[.]] and average operator {{.}} on Γint as

[[a(~x)]] ≡a+ − a−, (211a)

{{a(~x)}} ≡ a+ + a−

2
, (211b)

a±(~x) ≡ lim
s→0±

a(~x + s~n). (211c)

We can express the interface term as follows:

I ≡ − 〈[[[Ψ∗]]], Ψ−〉Γint
= −

〈
JΨ∗K, Ψ−

〉+
Γint

+
〈
JΨ∗K, Ψ+

〉−
Γint

. (212)

Using the PN expansion (i.e. Ψ ≈ RTΦ) and integrating over angle, it becomes:

I = −
(
JΦ∗K, L+Φ−

)
Γint

+
(
JΦ∗K, L−Φ+

)
Γint

. (213)

Using the identity:

ηχ− ζσ =
(η + ζ)(χ− σ) + (η − ζ)(χ + σ)

2
, (214)

we can then show that:

I =
(

JΦ∗K, (L− − L+){{Φ}}+ L+ + L−

2
JΦK

)
Γint

. (215)
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An upwind formulation can be obtained by using a Roe-type Riemann solver [55]. This is done by first diagonal-
izing (L+ − L−) ≡ UΛUT and then replacing (L+ + L−) in the previous expression with U|Λ|UT . Another option
resulting in a sparser matrix and bypassing the need for diagonalization is to use a Lax-Friedrich numerical flux
which yields the following interface terms [56, 57]:

I =
(

JΦ∗K,−~D ·~n{{Φ}}+ 1
2
‖~n‖1P JΦK

)
Γint

, (216)

where ‖·‖1 is the L1-norm and where we have noticed ~D ·~n = (L+ − L−).

The treatment for the numerical flux on the boundaries depends on the type of boundaries.

3.4.7.4 Reflecting boundary

In the case of a reflecting boundary condition, the numerical flux is very similar to Eq. (216) except that the value of
Ψ+ designates the value inside the exterior facet (i.e. Ψ) and the value of Ψ− corresponds to the value outside the
exterior facet and is thus determined by the boundary condition, which is Ψ evaluated at the reflected direction.
Therefore, the ’reflecting’ numerical flux is given by:

Fr(Φ) = −1
2
~nb · ~DΦ +

||~nb||1
2

PΦ− 1
2

LrΦ− ||~nb||1
2

QrΦ. (217)

for all ~x ∈ ∂Dr, where the matrix definitions can be found in Section B.2.

The first two terms correspond to the inside of the exterior facet while the last two correspond to the outside of the
exterior facet. We further define:

Fr(Φ) = Fext(Φ) +FBC
r (Φ), (218)

where

Fext(Φ) = −1
2
~nb · ~D Φ +

||~nb||1
2

P Φ, (219)

and

FBC
r (Φ) = −1

2
LrΦ− ||~nb||1

2
QrΦ. (220)

We dropped the subscript r for the exterior facet numerical flux because we will see that it is identical for a surface
source (incoming Dirichlet) boundary.

3.4.7.5 Incoming Dirichlet boundary

In the case of an Incoming Dirichlet boundary, we will once again use an expression similar to Eq. (216), with the
value of Ψ+ still designating the value inside the exterior facet. The boundary condition will be used to impose Ψ−,
the value outside the exterior facet. The problem is that we can only impose the incoming data of Ψ because that
is all the boundary conditions give us. For the outgoing data, we reconstruct them using the outgoing data from
the inside of the exterior facet. In other words, for the outside of the exterior facet, we impose the incoming data
through the boundary conditions and the outgoing data imposing continuity with the inside of the exterior facet.

We start by taking the moments of Ψinc:

Ψinc(~x, ~Ω) ≡ RT(~Ω)Φinc(~x). (221)

Note that this expansion gives values of Ψinc for ~Ω ·~nb > 0 but this does not matter as what follows will only
evaluate this expression for ~Ω ·~nb < 0 (in other words, its value for the positive half-sphere may change the values
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of the moments but not the interface term because of the angular integration over the negative half-sphere). Then,
we construct the numerical flux as follows:

Fd(Φ, Ψinc) = −1
2

(
~nb · ~D Φ + L+ Φ− L−Φinc

)
+
||~nb||1

2

(
P Φ−Q+ Φ−Q−Φinc

)
, (222)

for all ~x ∈ ∂Ds, where the matrix definitions can be found in Section B.2.

Again, the terms in the first parenthesis corresponds to ~DΦ where Φ+ = Φ and where Φ− is chosen to be Φ if it
corresponds to the outgoing data and to be Φinc if it corresponds to the incoming data. The second parenthesis was
similarly derived and corresponds to PJΦK. We can rearrange to get an expression similar to what we got for the
reflecting BC:

Fd(Φ, Ψinc) = Fext(Φ) +FBC
d (Φ, Ψinc), (223)

where

FBC
d (Φ, Ψinc) = −1

2

(
L+ Φ− L−Φinc

)
− ||~nb||1

2

(
Q+ Φ + Q−Φinc

)
. (224)

3.4.7.6 Filtering

The purpose of the filtering approach [58, 59] is to mitigate the negativity and oscillations inherent to the PN ap-
proximation. Besides, this technique helps improve the conditioning of the system in the streaming limit (Σt → 0)
in which PN tends to do poorly. This technique therefore speeds up the calculation in that limit.

The idea is to artificially increase the cross-section in such a way that:

• The particle/energy conservation is maintained.

• The rotational invariance of the solution is preserved.

• The filter vanishes as N → ∞, which is desirable since the angular expansion is exact in that limit.

Filtering is included in the transport equation by adding an extra collision term:

(Φ∗, σf(~x)PFΦ) , (225)

where σf(~x) is the filter strength (see the guidelines on how to choose it below) and the expression for F is given by:

F = diag
{
− log σfilterType

(
`

N + 1

)
, m = −`, ..., ` ; ` = 0, ..., N

}
, (226)

Several filter types can be considered:

σLanczos(ζ) =
sin ζ

ζ
; σSSpline(ζ) =

1
1 + ζ4 ; σexp(ζ) = exp(c ζα). (227)

In the exponential filter, α ∈ N and c = log(εM) where εM is the machine accuracy. The Lanczos and Spherical
Spline filters are used in [59] while the exponential filter is considered in [60] The main difference between the
filters is their order. Roughly speaking, the higher the order, the less the filter will give smooth solutions (think of
an unfiltered calculation as a filter of order ∞). On the other hand, the convergence of the solution with respect to N
is bounded by the order of the filter. The Lanczos, Spherical Spline and Exponential filters are respectively of order
2, 4 and α. The Lanczos filter is the default filter.

From experience, it works best when the filtering contribution is comparable to that of the reaction terms in the
regions where it is needed. The typical way to determine the ideal σf(~x) is:

• Run a calculation without filter and localize where the scalar flux becomes negative.
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• Activate the filter in that ’negative’ region2 as well as in an upstream region of a comparable size (it will
smooth out the scalar flux in both regions usually making it positive again). For the other regions of the
problem, the filter can typically be set to zero or to a smaller value.

• The choice of the value of σf(~x) is a little trickier: although its units are those of a macroscopic cross-section, its
scaling makes it not directly comparable to a cross-section. As a rule of thumb, if you know that the unfiltered
calculation has problems up to a given N0,3 then a good scaling is usually obtained if you choose: σf(~x) =
−σt(~x)/ log σfilterType (1/(N0 + 1)) in the regions where you need the filter, σt being the total macroscopic
cross-section in the domain4.

More details can be found in [56, 57]. Another way to tackle this is to test out a few different values of σf and choose
the one that seems the best. Note also that it is also possible to have a group-dependent filter strength. A study of
such filters was done in [61].

3.4.7.7 Thermal radiation

The option of coupling the DFEM-PN scheme with the temperature equation without conduction (see Section 2.4.2)
is currently available. Since conduction is not allowed at this point, the spatial discretization of the temperature
equation does not present any particular difficulty. The only additional kernel that needed to be implemented for
this PN scheme was the Planckian reemission in the RTE (see Table 32).

Planckian kernel: (
Ψ∗,

1
4π

SBB(T)
)
=

G

∑
g=1

∫
S

dΩ
(

Ψ∗g,
1

4π
SBB,g

)
D
=

G

∑
g=1

(
Φ∗g,0,0 , P0,0SBB,g

)
D

. (228)

SBB,g is defined by Eq. (62).

3.4.7.8 Neutron

This weak form currently does not support neutrons.

3.4.7.9 R-spherical coordinate

This weak form currently does not support R-spherical coordinate.

3.4.7.10 RZ-cylindrical coordinate

This weak form currently does not support RZ-cylindrical coordinate.

3.4.7.11 Mass matrix lumping

Furthermore, for robustness in optically thick region, lumping the mass matrix for the removal terms can be neces-
sary in the context of discontinuous Galerkin discretizations of discrete ordinate equations [62]. In practice, lumping
a matrix is done by replacing it by a diagonal matrix whose i-th term is the sum of the elements on the i-th row of
the original matrix.

2If the problem is uniform, then activate the filter everywhere.
3Recall that the unfiltered solution should become more and more accurate as N goes to ∞. Therefore, there is an N0 for which the unfiltered

solution can be considered ’good enough’.
4It can be tempting to set σf to−σt/ log σfilterType (1/(N + 1)) but this prevents the filtered solution to converge to the unfiltered solution (and

thus to the analytical solution) as N → ∞.
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For instance, (u∗, u)D is computed as:

∑
i

u∗i

(∫
D

φ∗i u dx
)

. (229)

Expanding u with the spatial test functions: u = ∑
j

ujφj, this term becomes:

∑
i

∑
j

u∗i

(∫
D

φ∗i φjdx
)

uj. (230)

Lumping this term can be done by summing these terms but adding them to the diagonal contribution, i.e.:

∑
i

u∗i

(∫
D

φ∗i ∑
j

φjdx

)
ui. (231)

Table 32 DFEM-PN kernels.

Kernel Type Jacobian

−
(
~∇Φ∗g,`,m , ~Dp,p′Φg,`′ ,m′

)
D

PNDFEMStreamingVol Y(
Φ∗g,`,m , Σt,gPp,pΦg,`,m

)
D

PNDFEMRemoval Y(
Φ∗g,`,m , Σt,gPp,pΦg,`,m

)
D

a PNDFEMLumpedRemoval Y(
Φ∗g,`,m , Σf,gPp,pFp,pΦg,`,m

)
D

PNDFEMFilter Y(
Φ∗g,`,m , Pp,p ∑G

g′=1 Σg′→g
s,` Φg′ ,`,m

)
D

PNDFEMScattering Db(
Φ∗g,`,m , Pp,p

1
vg

∂Φg,`′ ,m′
∂t

)
D

PNDFEMTimeDerivative Y(
Φ∗g,0,0 , P0,0SBB,g

)
D

PNDFEMPlanck Y(
Φ∗g,`,m , Pp,pQg,`,m

)
D

PNDFEMSource N/A

a Lumped terms
b D means that only the diagonal part (within-group) is assembled.

Table 33 DFEM-PN kernels (continued).

Type Condition Number of kernels

PNDFEMStreamingVol Σt,g
a N1

b× G
PNDFEMRemoval Σt,g, no removal lumping N × G

PNDFEMLumpedRemoval Σt,g, removal lumping N × G
PNDFEMFilter filtering (N − 1)× G

PNDFEMScattering Sg,`,m N (Linput
c)× G

PNDFEMTimeDerivative vg N × G
PNDFEMPlanck thermal G
PNDFEMSource Qext

g N (Ls
d)× G

a Means where Σt,g is available.
b Number of non-zero elements in the set {~Dp,p′ ; p, p′ ∈ {1, · · · ,N}, p 6= p′}.
c Ls is a user input corresponding to the maximum order of the scattering source. By default, it
is set to 0 (isotropic scattering).
d Linput is a user input corresponding to the maximum order of the volumetric source. By de-
fault, it is set to 0 to only evaluate isotropic sources.

73



3.4 Angular discretization and final weak forms Rattlesnake Theory Manual

Table 34 DFEM-PN dgkernels.

Kernel Type Jacobian〈
JΦ∗g,`,mK,−~Dp,p′ ·~n{{Φg,`′ ,m′}}+ 1

2‖~n‖1Pp,p′ JΦg,`′ ,m′K
〉

Γint
PNDFEMStreamingInterior Da

a D means that only the diagonal part (within-group) is assembled.

Table 35 DFEM-PN dgkernels (continued).

Type Condition Number of dgkernels

PNDFEMStreamingInterior Σt,g N1
a× G

b Number of non-zero elements in the set {~Dp,p′ ; p, p′ ∈
{1, · · · ,N}, p 6= p′} plus N .

Table 36 DFEM-PN userobjects. Refer to Section B.3 and derivations above for the matrix definitions.

Content Type

Q+ QPlusMatrixOnSide
Q− QMinusMatrixOnSide
Lr LrMatrixOnSide
Qr QrMatrixOnSide

Table 37 DFEM-PN auxiliary materials.

Name Type Number of materials Condition

||~n||1 L1NormNormalMaterial 1 always true

Sg,`,m SsrcMaterial N (L)× G Σg′→g
s,` , g′ = 1, · · · , G; g = 1, · · · , G

Table 38 DFEM-PN boundary conditions.

Type Equation Number of BCs Jacobian

PNDFEMStreamingExterior
1
2

〈
Φ∗g,`,m ,−~nb · ~Dp,p′ Φg,`′ ,m′ + ||~nb||1Pp,p′ Φg,`′ ,m′

〉
∂D

N × G Da

PNDFEMReflectingBC
1
2

〈
Φ∗g,`,m ,−Lr,p,p′Φg,`′ ,m′ − ||~nb||1Qr,p,p′Φg,`′ ,m′

〉
∂Dr

N × G D

PNDFEMIncomingDirichletBC_bilinear
1
2

〈
Φ∗`,m ,−L+

p,p′ Φg,`′ ,m′ − ||~nb||1Q+
p,p′ Φg,`′ ,m′

〉
∂Ds

N × G D

PNDFEMIncomingDirichletBC_linear − 1
2

〈
Φ∗g,`,m ,−L−p,p′Φ

inc
g,`′ ,m′ + ||~nb||1Q−p,p′Φ

inc
g,`′ ,m′

〉
∂Ds

Ns × G N/A

a Only the diagonal part (within-group) is assembled.
b Ns is the number of source transport functions (excluding the zero function). If there are no source functions, it is equal to 0.
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3.4.7.12 DFEM-P1

In this subsection, we detail the weak formulation in the particular P1 case with one energy group. We do not
assume any particular dimension and define:

φ ≡ Φ0,0 , ~J ≡ {Φ1,0, Φ1,1, Φ1,−1} (232)

If the spatial dimension is less than 3, we drop the last components of that vector accordingly so that it contains
only the non-trivial currents. We first show what each volumetric, interface and boundary terms become and then
summarize it by giving the entire P1 weak formulation.

Streaming kernel:

(L∗2Ψ∗, Ψ) =
(
−~D · ~∇Φ∗, Φ

)
D

=
(
−~∇φ∗,~J

)
D
−
(
~∇ ·~J∗, φ

)
D

.
(233)

Collision kernel:

(L∗2Ψ∗, Ψ) = (Φ∗ , ΣtPΦ)D

= (φ∗ , Σtφ)D +
(
~J∗ , 3Σt~J

)
D

.
(234)

Scattering kernel:

(Ψ∗,SΨ) = (PΦ∗, ΣsΦ)D

= (φ∗ , Σs,0φ)D +
(
~J∗ , 3Σs,1~J

)
D

. (235)

Source kernel: (
Ψ∗, Qext) = (φ∗ , Q0)D +

(
~J∗ , 3Q1

)
D

. (236)

Filtering kernel: (
Ψ∗, Qext) = (Φ∗, σf(~x)PFΦ) (237)

= −
(
~J∗ , 3σf(~x) log σfilterType(0.5)~J

)
D

. (238)

Transient kernel: (
Ψ∗,

∂

∂t

(
Ψ

v

))
=

(
φ∗ ,

1
v

∂φ

∂t

)
D
+

(
~J∗ , 3

1
v

∂~J
∂t

)
D

. (239)

Planckian kernel:

(Ψ∗, B) = (φ∗, B)D . (240)

Interior facet terms:

I =
〈

JΦ∗K,−~D ·~n{{Φ}}+ 1
2
‖~n‖1P JΦK

〉
Γint

, (241)

= −
〈
J~J∗ ·~nK, {{φ}}

〉
Γint
−
〈
Jφ∗K, {{~J ·~n}}

〉
Γint

(242)

+

〈
‖~n‖1

2
Jφ∗K, JφK

〉
Γint

+

〈
3‖~n‖1

2
J~J∗K, J~JK

〉
Γint

. (243)
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Exterior facet terms are given by:

1
2

〈
Φ∗g,`,m ,−~nb · ~Dp,p′ Φg,`′ ,m′ + ||~nb||1Pp,p′ Φg,`′ ,m′

〉
∂D

= −1
2

〈
~J∗ ·~nb, φ

〉
∂D
− 1

2

〈
φ∗,~J ·~nb

〉
∂D

(244)

+

〈
‖~nb‖1

2
φ∗, φ

〉
∂D

+

〈
3‖~nb‖1

2
~J∗,~J

〉
∂D

. (245)

To explicit the remaining boundary terms, we first give the expression of the P1 matrices from Table 36:

Q± =
∫
±~Ω·~nb>0

R(~Ω)RT(~Ω) dΩ =
1

w2

∫
±~Ω·~nb>0

(
1 3~Ω

3~Ω 9~Ω~Ω

)
dΩ

=
1

2w

 1 ±3
2
~nb

±3
2
~nb 3I

 ,
(246)

L± =
∫
±~Ω·~nb>0

R(~Ω)RT(~Ω) |~Ω ·~nb| dΩ =
1

w2

∫
±~Ω·~nb>0

(
1 3~Ω

3~Ω 9~Ω~Ω

)
|~Ω ·~nb| dΩ

=
1

4w

 1 ±2~nb

±2~nb
9
4

I +
9
4
~nb~nb

 ,
(247)

Qr =
∫
S

R(~Ω)RT(~Ωr) dΩ =
1

w2

∫
S

(
1 3(~Ω− 2(~Ω ·~nb)~nb)

3~Ω 9~Ω(~Ω− 2(~Ω ·~nb)~nb)

)
dΩ

=
1
w

1 0

0 3I− 6~nb~nb

 ,
(248)

Lr =
∫
S

R(~Ω)RT(~Ωr) |~Ω ·~nb| dΩ =
1

w2

∫
S

(
1 3(~Ω− 2(~Ω ·~nb)~nb)

3~Ω 9~Ω(~Ω− 2(~Ω ·~nb)~nb)

)
|~Ω ·~nb| dΩ

=
1
w

 0 −~nb

~nb 0

 .
(249)

The reflecting boundary terms are then given by:

1
2

〈
Φ∗g,`,m ,−Lr,p,p′Φg,`′ ,m′ − ||~nb||1Qr,p,p′Φg,`′ ,m′

〉
∂Dr

= −1
2

〈
~J∗ ·~nb, φ

〉
∂Dr

+
1
2

〈
φ∗,~J ·~nb

〉
∂Dr

(250)

− 1
2
〈φ∗, ||~nb||1φ〉∂Dr

− 3
2

〈
~J∗, ||~nb||1~J

〉
∂Dr

+ 3
〈
~J∗ ·~nb, ||~nb||1~J ·~nb

〉
∂Dr

.

The bilinear contribution of the incoming Dirichlet boundary is given by:

1
2

〈
Φ∗`,m ,−L+

p,p′ Φg,`′ ,m′ − ||~nb||1Q+
p,p′ Φg,`′ ,m′

〉
∂Ds

(251)

= −1
8
〈φ∗, φ〉∂Ds

− 1
4

〈
~J∗ ·~nb, φ

〉
∂Ds
− 1

4

〈
φ∗,~J ·~nb

〉
∂Ds
− 9

32

〈
~J∗,~J

〉
∂Ds
− 9

32

〈
~J∗ ·~nb,~J ·~nb

〉
∂Ds

− 1
4
〈φ∗, ||~nb||1φ〉∂Ds

− 3
8

〈
~J∗ ·~nb, ||~nb||1φ

〉
∂Ds
− 3

8

〈
φ∗, ||~nb||1~J ·~nb

〉
∂Ds
− 3

4

〈
~J∗, ||~nb||1~J

〉
∂Ds

,

and the linear contribution of the incoming Dirichlet boundary (no minus sign because on the right hand side) is
given by:

1
2

〈
Φ∗g,`,m ,−L−p,p′Φ

inc
g,`′ ,m′ + ||~nb||1Q−p,p′Φ

inc
g,`′ ,m′

〉
∂Ds

(252)
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= −1
8

〈
φ∗, φinc

〉
∂Ds

+
1
4

〈
~J∗ ·~nb, φinc

〉
∂Ds

+
1
4

〈
φ∗,~Jinc ·~nb

〉
∂Ds
− 9

32

〈
~J∗,~Jinc

〉
∂Ds
− 9

32

〈
~J∗ ·~nb,~Jinc ·~nb

〉
∂Ds

+
1
4

〈
φ∗, ||~nb||1φinc

〉
∂Ds
− 3

8

〈
~J∗ ·~nb, ||~nb||1φinc

〉
∂Ds
− 3

8

〈
φ∗, ||~nb||1~Jinc ·~nb

〉
∂Ds

+
3
4

〈
~J∗, ||~nb||1~Jinc

〉
∂Ds

,

In summary, the bilinear form of the DFEM-P1 method with one energy group is given by:

bDFEM-P1 =
(
−~∇φ∗,~J

)
D
−
(
~∇ ·~J∗, φ

)
D
+ (φ∗ , Σaφ)D +

(
~J∗ , 3Σtr~J

)
D

+

(
φ∗ ,

1
v

∂φ

∂t

)
D
+

(
~J∗ , 3

1
v

∂~J
∂t

)
D
+ (φ∗, B)D −

(
~J∗ , 3σf(~x) log σfilterType(0.5)~J

)
D

−
〈
J~J∗ ·~nK, {{φ}}

〉
Γint
−
〈
Jφ∗K, {{~J ·~n}}

〉
Γint

+

〈
‖~n‖1

2
Jφ∗K, JφK

〉
Γint

+

〈
3‖~n‖1

2
J~J∗K, J~JK

〉
Γint

− 1
2

〈
~J∗ ·~nb, φ

〉
∂D
− 1

2

〈
φ∗,~J ·~nb

〉
∂D

+

〈
‖~nb‖1

2
φ∗, φ

〉
∂D

+

〈
3‖~nb‖1

2
~J∗,~J

〉
∂D

(253)

− 1
2

〈
~J∗ ·~nb, φ

〉
∂Dr

+
1
2

〈
φ∗,~J ·~nb

〉
∂Dr
− 1

2
〈φ∗, ||~nb||1φ〉∂Dr

− 3
2

〈
~J∗, ||~nb||1~J

〉
∂Dr

+ 3
〈
~J∗ ·~nb, ||~nb||1~J ·~nb

〉
∂Dr

− 1
8
〈φ∗, φ〉∂Ds

− 1
4

〈
~J∗ ·~nb, φ

〉
∂Ds
− 1

4

〈
φ∗,~J ·~nb

〉
∂Ds
− 9

32

〈
~J∗,~J

〉
∂Ds
− 9

32

〈
~J∗ ·~nb,~J ·~nb

〉
∂Ds

− 1
4
〈φ∗, ||~nb||1φ〉∂Ds

− 3
8

〈
~J∗ ·~nb, ||~nb||1φ

〉
∂Ds
− 3

8

〈
φ∗, ||~nb||1~J ·~nb

〉
∂Ds
− 3

4

〈
~J∗, ||~nb||1~J

〉
∂Ds

,

and the linear form of the DFEM-P1 method with one energy group reads:

lDFEM-P1 = (φ∗ , Q0)D +
(
~J∗ , 3Q1

)
D

(254)

− 1
8

〈
φ∗, φinc

〉
∂Ds

+
1
4

〈
~J∗ ·~nb, φinc

〉
∂Ds

+
1
4

〈
φ∗,~Jinc ·~nb

〉
∂Ds
− 9

32

〈
~J∗,~Jinc

〉
∂Ds
− 9

32

〈
~J∗ ·~nb,~Jinc ·~nb

〉
∂Ds

+
1
4

〈
φ∗, ||~nb||1φinc

〉
∂Ds
− 3

8

〈
~J∗ ·~nb, ||~nb||1φinc

〉
∂Ds
− 3

8

〈
φ∗, ||~nb||1~Jinc ·~nb

〉
∂Ds

+
3
4

〈
~J∗, ||~nb||1~Jinc

〉
∂Ds

.

Some differences with the P1C method can be found (defined in [63]). First of all, the streaming terms are slightly
different because the volumetric term containing ~∇φ is integrated by parts in [63]. Second of all, some of the
interface terms have different coefficients, mainly because the penalty term in the DFEM-PN method has been
modified using a Lax-Friedrich flux to reduce the number of terms for large values of N and thus the cost of the
method.
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3.5 Diffusion

Diffusion weak forms are derived for CDE. We will use the same FEM notation as in Section 3.3.1. CFEM schemes
are given in the first subsection Section 3.5.1, followed by the DFEM scheme in Section 3.5.2. While CFEM diffusion
schemes have a smaller number of unknowns for achieving a given accuracy than DFEM diffusion schemes, DFEM
schemes allows the discontinuity of the solution on element sides. Connections between transport schemes and
diffusion schemes are given in Section 3.6.

3.5.1 CFEM-Diffusion

We multiply the test function Φ∗, which are zero at the Dirichlet boundary, with Eq. (27) and integrate over the
phase space (

Φ∗,
∂

∂t

(
Φ

v

))
D
−
(

Φ∗, ~∇ ·D~∇Φ
)
D
+ (Φ∗,L3Φ)D =

(
Φ∗, Qext

0
)
D + (Φ∗,SdΦ) ,

and apply the integration by parts and Gauss theorem on the diffusion term:(
Φ∗,

∂

∂t

(
Φ

v

))
D
+
(
~∇Φ∗,D~∇Φ

)
D
−
(

Φ∗,D~∇Φ ·~nb

)
∂D2
−
(

Φ∗,D~∇Φ ·~nb

)
∂D3

+ (Φ∗,L3Φ)D =(
Φ∗, Qext

0
)
D + (Φ∗,SdΦ) .

We then substitute the boundary conditions, Eq. (27c) and Eq. (27d) into the boundary terms and obtain(
Φ∗,

∂

∂t

(
Φ

v

))
D
+
(
~∇Φ∗,D~∇Φ

)
D
−
(
Φ∗, Jnet)

∂D2
+

(
Φ∗,

1
2

eΦ

)
∂D3

−
(

Φ∗, 2eJinc
)

∂D3
+ (Φ∗,L3Φ)D =(

Φ∗, Qext
0
)
D + (Φ∗,SdΦ) .

Defining

bdiff(Φ
∗, Φ) ≡

(
Φ∗,

∂

∂t

(
Φ

v

))
D
+
(
~∇Φ∗,D~∇Φ

)
D
+

(
Φ∗,

1
2

eΦ

)
∂D3

+ (Φ∗,L3Φ)D − (Φ∗,SdΦ) , (255)

ldiff(Φ
∗) ≡

(
Φ∗, Jnet)

∂D2
+
(

Φ∗, 2eJinc
)

∂D3
+
(
Φ∗, Qext

0
)
D , (256)

the weak form is: find a solution Φ in a function space, where all functions satisfy the Dirichlet boundary, such that

bdiff(Φ
∗, Φ) = ldiff(Φ

∗), ∀Φ∗. (257)

We can do the same procedure for the adjoint equation and end up with: Find a solution Φ∗ in a function space V,
such that

b
∗
diff(Φ

∗, Φ) = l
∗
diff(Φ), ∀Φ, (258)

where

b
∗
diff(Φ

∗, Φ) ≡−
(

1
v

∂

∂t
Φ∗, Φ

)
D
+
(
D~∇Φ∗, ~∇Φ

)
D
+

(
1
2

eΦ∗, Φ

)
∂D3

+ (L3Φ∗, Φ)D − (S∗dΦ∗, Φ) , (259)

l
∗
diff(Φ) ≡

(
Φ, Jnet∗)

∂D2
+
(

Φ, 2eJinc∗
)

∂D3
+
(
Φ, Qext∗

0
)
D . (260)

It can be seen that with zero initial and final conditions or steady-state, b∗diff(Φ
∗, Φ) = bdiff(Φ

∗, Φ). The same bilin-
ear form for the primal equation can be applied to the adjoint equation. We can apply FEM for discretizing the weak
form. As described in Section 3.3.1, we can still use the same notation for the discretized weak form. We expand
all the kernels in Eq. (257) and extra kernels for various radiation types in order to make a direct correspondence to
the code.
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3.5.1.1 Steady-state

Diffusion kernel: (
~∇Φ∗,D~∇Φ

)
D
=

G

∑
g=1

(
~∇Φ∗g, Dg~∇Φg

)
D

. (261)

Removal kernel:

(Φ∗,L3Φ)D =
G

∑
g=1

(
~∇Φ∗g, Σr,g~∇Φg

)
D

. (262)

Scattering kernel:

(Φ∗,SdΦ) =
G

∑
g=1

∑
g′ 6=g

(
Φ∗g, Σs,g′→gΦg′

)
D

, (263)

=
G

∑
g=1

(
Φ∗g, Qg

)
D

. (264)

External source kernel:

(
Φ∗, Qext

0
)
D =

G

∑
g=1

(
Φ∗g, Qext

g,0

)
D

. (265)

3.5.1.2 Boundary conditions

The Dirichlet condition is applied on the nodes of boundary ∂D1.

Neumann boundary condition:

(
Φ∗, Jnet)

∂D2
=

G

∑
g=1

(
Φ∗g, Jnet

g

)
∂D2

. (266)

When Jnet
g = 0, no boundary condition is needed. The homogenous Neumann boundary condition is naturally

imposed. Non-homogeneous Neumann boundary condition is currently not implemented. Robin boundary condi-
tion: (

Φ∗,
1
2

eΦ− 2eJinc
)

∂D3

=
G

∑
g=1

(
Φ∗g,

1
2

egΦg − 2eg Jinc
g

)
∂D3

. (267)

3.5.1.3 Transient kernel

(
Φ∗,

∂

∂t

(
Φ

v

))
D
=

G

∑
g=1

(
Φ∗g,

∂

∂t

(
Φg

vg

))
D

. (268)

We currently assume vg is time independent and have(
Φ∗,

∂

∂t

(
Φ

v

))
D
=

G

∑
g=1

(
Φ∗g,

1
vg

∂Φg

∂t

)
D

. (269)
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3.5.1.4 Neutron

Prompt fission kernel:

(Φ∗,F0Φ) =
G

∑
g=1

(
Φ∗g,

χ̄g

k
F
)
D

, (270)

where F is the fission source as in Eq. (138). It is noted that for transients χ̄g = χp,g(1− β) and in steady-state cases
χ̄g = χg as in the fission kernels of other schemes.

Delayed neutron kernel:

(Φ∗,C0C) =
G

∑
g=1

(
Φ∗g,

1
k

I

∑
i=1

χd,g,iλiCi

)
D

. (271)

The DNP concentrations are evaluated similarly as in Eq. (140a).

3.5.1.5 Thermal radiation

Planckian emission kernel:

(Φ∗, SBB(T)) =
G

∑
g=1

(
Φ∗g, SBB,g

)
D

. (272)

SBB,g is defined by Eq. (62).

3.5.1.6 R-spherical coordinate

No extra kernel is needed in R-spherical coordinate for the diffusion equation.

3.5.1.7 RZ-axial symmetric coordinate

No extra kernel is needed in RZ-axial symmetric coordinate for the diffusion equation.

3.5.1.8 Mathematical adjoint

Mathematical adjoint is equal to physical adjoint for the diffusion equation.

3.5.1.9 Summary of MOOSE objects

The MOOSE objects used by CFEM-Diffusion are listed in Table 39, Table 40, Table 41, Table 42 and Table 43.
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Table 39 CFEM-Diffusion kernels.

Kernel Type Jacobian(
~∇Φ∗g, Dg~∇Φg

)
D

DiffusionApproximation Y(
~∇Φ∗g, Σr,g~∇Φg

)
D

Removal Y(
Φ∗g, Σs,g′→gΦg′

)
D

DiffusionScattering Y(
Φ∗g, Qg

)
D

DiffusionGroupScattering N(
Φ∗g, Qext

g,0

)
D

CDSource N/A(
Φ∗g, χ̄g

k F
)
D

DiffusionFission Y(
Φ∗g, 1

k ∑I
i=1 χd,g,iλiCi

)
D

CDDelayedNeutron Ya(
Φ∗g, SBB,g

)
D

DiffusionPlanck N(
Φ∗g, 1

vg

∂Φg
∂t

)
D

CDTimeDerivative Y

a Jacobian is assembled only when DNPs are treated as material
properties.

Table 40 CFEM-Diffusion kernels (continued).

Type Condition Number of kernels

DiffusionApproximation Dg
a G

Removal Σr,g G
DiffusionScattering Σg′→g

s,0 NNZb

DiffusionGroupScattering Qg G
CDSource Qext

g Ns
c× G

DiffusionFission χ̄g G
CDDelayedNeutron χd,g,i, i = 1, · · · , I G

DiffusionPlanck D G
CDTimeDerivative vg G

a Means where Dg is available.
b Number of non-zeros in the scattering matrix, i.e. all (g′, g)s whose

Σs
g′→g =

{
Σg′→g

s,` , ∀` = 0, · · · , L
}
6= 0.

c Number of external source functions.

Table 41 CFEM-Diffusion boundary conditions.

Type Equation Number of BCs Jacobian

CDPartialCurrentBC
(

Φ∗g, 1
2 egΦg − 2eg Jinc

g

)
∂D3

Ns
a× G Y

a Ns is the number of surface source transport functions. If there are no source
functions, it is equal to 1.

Table 42 CFEM-Diffusion auxiliary kernels.

Name Equation Type Number of kernels Condition

Fission source (F) Eq. (138) MaterialFissionSource 1 νΣf,g, g = 1, · · · , G
DNP (Ci, i = 1, · · · , I) Eq. (140a) DelayedNeutronPrecursor I νΣf,g, g = 1, · · · , G
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Table 43 CFEM-Diffusion auxiliary materials.

Name Equation Type Number of materials Condition

Qg Eq. (23) SsrcMaterial G Σg′→g
s,0 , g′ = 1, · · · , G; g = 1, · · · , G

F Eq. (138) FsrcMaterial 1 νΣf,g, g = 1, · · · , G
Ci, i = 1, · · · , I Eq. (140a) DNPMaterial I νΣf,g, g = 1, · · · , G

3.5.2 DFEM-Diffusion

We directly give the weak form suitable for DFEM. The derivation can be found in literature [64]. We will need a
few terms defined on the interior sides of the mesh. It is typical to impose the Dirichlet boundary condition weakly.

bdiff-DFEM(Φ∗, Φ) =bdiff(Φ
∗, Φ)+

([[Φ∗]], [[κΦ]])Γint
+
(
[[Φ∗]], {{D~∇Φ ·~n}}

)
Γint

+ ε
(
{{D~∇Φ∗ ·~n}}, [[Φ]]

)
Γint

+

(Φ∗, κΦ)∂D1
−
(

Φ∗,D~∇Φ ·~nb

)
∂D1
− ε

(
D~∇Φ∗ ·~nb, Φ

)
∂D1

, (273)

ldiff-DFEM(Φ∗) =ldiff(Φ
∗) + (Φ∗, κΦb)∂D1

− ε
(
D~∇Φ∗ ·~nb, Φb

)
∂D1

. (274)

We recall the jump operator [[.]] and average operator {{.}} on Γint defined in Eq. (211a):

[[a(~x)]] ≡a+ − a−,

{{a(~x)}} ≡ a+ + a−

2
,

a±(~x) ≡ lim
s→0±

a(~x + s~n).

Operator κ is defined as

κ ≡


κ1
κ2
...

κG

 , (276)

where the penalty coefficients κg, g = 1, · · · , G are evaluated with the following formulation:

κg =

{
{{c(p)Dg

h⊥
}}, ~x ∈ Γint

c(p)Dg
h⊥

, ~x ∈ ∂D1
, (277)

c(p) =2p(p + 1), (278)

where p is the local polynomial order of the elements; h⊥ is the length of the element orthogonal to the side.
Switching parameter ε can be 1, 0, or -1, corresponding to symmetric, incomplete, or non-symmetric penalty method
(SIP, IIP and NIP, respectively). When ε = 1, the bilinear form is SPD with sufficiently large penalty coefficients.
Those extra terms are consistent. It is noted that the weak form is indeed independent of the orientation of the
interior normal.

3.5.2.1 Steady-state

All volumetric kernels are identical to those for CFEM-Diffusion.

We have the extra DGKernel:

([[Φ∗]], [[κΦ]])Γint
+
(
[[Φ∗]], {{D~∇Φ ·~n}}

)
Γint

+ ε
(
{{D~∇Φ∗ ·~n}}, [[Φ]]

)
Γint

=

G

∑
g=1

((
[[Φ∗g]], [[κgΦg]]

)
Γint

+
(
[[Φ∗g]], {{Dg~∇Φg ·~n}}

)
Γint

+ ε
(
{{Dg~∇Φ∗g ·~n}}, [[Φg]]

)
Γint

)
. (279)
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3.5.2.2 Boundary conditions

Dirichlet boundary condition:

(Φ∗, κ(Φ−Φb))∂D1
−
(

Φ∗,D~∇Φ ·~nb

)
∂D1
− ε

(
D~∇Φ∗ ·~nb, (Φ−Φb)

)
∂D1

=

G

∑
g=1

((
Φ∗g, κg(Φg −Φb,g)

)
∂D1
−
(

Φ∗g, Dg~∇Φg ·~nb

)
∂D1
− ε

(
Dg~∇Φ∗g ·~nb, (Φg −Φb,g)

)
∂D1

)
. (280)

Currently only homogeneous Dirichlet boundary condition, i.e. Φb = 0, is supported.

Neumann and Robin boundary conditions are identical to those for CFEM-Diffusion.

3.5.2.3 Transient kernel

All transient kernels are identical to those for CFEM-Diffusion.

3.5.2.4 Neutron

All neutron kernels are identical to those for CFEM-Diffusion.

3.5.2.5 Thermal radiation

All thermal radiation kernels are identical to those for CFEM-Diffusion.

3.5.2.6 R-spherical coordinate

No extra kernel is needed in R-spherical coordinate for the diffusion equation.

3.5.2.7 RZ-axial symmetric coordinate

No extra kernel is needed in RZ-axial symmetric coordinate for the diffusion equation.

3.5.2.8 Mathematical adjoint

The mathematical adjoint is equal to the physical adjoint when parameter ε in Eq. (273) is one, i.e. symmetric
penalty method. We should not evaluate adjoint with incomplete and asymmetric penalty methods.

3.5.2.9 Summary of MOOSE objects

The MOOSE objects used by DFEM-Diffusion are amost identical to the objects of CFEM-Diffusion. It only has the
DG kernel and the weakly imposed Dirichlet boundary condition, which is summarized bellow.
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Table 44 DFEM-Diffusion DG kernel and Dirichlet boundary condition.

Type Equation Number of BCs Jacobian

DGDiffusiona

(
[[Φ∗g]], [[κgΦg]]

)
Γint

+(
[[Φ∗g]], {{Dg~∇Φg ·~n}}

)
Γint

+

ε
(
{{Dg~∇Φ∗g ·~n}}, [[Φg]]

)
Γint

G Y

DGDiffusionDirichletBCb

(
Φ∗g, κg(Φg −Φb,g)

)
∂D1
−(

Φ∗g, Dg~∇Φg ·~nb

)
∂D1
−

ε
(

Dg~∇Φ∗g ·~nb, (Φg −Φb,g)
)

∂D1

G Y

a DG diffusion kernel is on Γint.
b DG diffusion Dirichlet BC is on ∂D1.

3.6 Nonlinear diffusion acceleration

Nonlinear diffusion acceleration (NDA) is an effective angular acceleration scheme for the solution of the multi-
group transport equations discretized with SN . It introduces a low-order diffusion equation with additional nonlin-
ear closure terms so that, at convergence, the low-order scalar fluxes become identical to the projection of the high
order solution into the low order space. NDA is a generalization of the well-known coarse-mesh finite difference
(CMFD) [65, 66] in the sense that instead of a simple low order balance equation, a full low order diffusion prob-
lem is solved. The closure terms are updated iteratively with a limited number of high-order transport updates
of the angular fluxes. As a result, the majority of the work can be carried out in the low-order equation featuring
a significantly smaller number of unknowns. Because the required number of transport updates is much smaller
than the number of transport updates when solving the high-order equation directly the computational cost can be
significantly reduced given that the transport sweeps account for the majority of the memory and CPU-time con-
sumption. Transport updates can generally be done quite efficiently because only the streaming-collision operator
needs be inverted. For example, updates can be conducted with the well-known matrix-free sweeping algorithm
with DFEM SN .

The NDA high order and low order equations constitute a nonlinear system of equations that is typically solved
by fixed-point or Picard iteration, i.e. the iteration procedure alternates between diffusion solves and transport
updates until convergence. In the first subsection, we describe the Picard iteration process using abstracted weak
forms of the high-order and low-order equations. Stability including the effect of the choice of diffusion coefficients
is briefly discussed. Fourier analysis for the convergence of the Picard iteration can be found in Ref. [67, 46, 68]
and is not included in this manual. In Rattlesnake, we do not consider NDA solved by a Newton-type methods,
that was suggested as a remedy to restore stability [69][70] because (1) it generally requires more transport updates
and is hence more expensive and (2) is more difficult to implement. Current discussions are limited to steady-state
equations for common/neutron transport although extensions to transient with other types of particles are possible.
The next three subsections detail the weak forms for SAAF-CFEM-SN, LS-CFEM-SN and DFEM-SN respectively.
Discussions on the important implementation details are also included.

3.6.1 Picard iteration

The low-order weak form can be written as

bdiff(Φ
∗, Φ)−F0(Φ

∗, Φ) +C[Ψ](Φ∗, Φ) = l(Φ∗), (281)

where bdiff is the properly defined diffusion bilinear form, F0 is the diffusion fission form and C[Ψ] is the closure
bilinear form depending on the high-order solution Ψ. Besides, l is the high-order linear operator multiplied by an
isotropic (angular independent) test function with Ψ∗g = Φ∗g, g = 1, · · · , G. For the CDE, we do not have a fission
term; when solving k-eigenvalue problems, we do not have the linear form and the fission bilinear form is divided
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by k-effective:

bdiff(Φ
∗, Φ)− 1

k
F0(Φ

∗, Φ) +C[Ψ](Φ∗, Φ) = 0. (282)

It should be noted that k-effective is an unknown and not simply a constant in eigenvalue calculations. The high-
order weak form is

L̄(Ψ∗, Ψ)− S0(Ψ
∗, Φ) + (L− L̄)(Ψ∗, Ψ)− (S− S0)(Ψ

∗, Ψ)−F(Ψ∗, Φ) = l(Ψ∗). (283)

The streaming and collision operator L is split into two parts: an approximation L̄ that is easy to invert and a
remainder that should be small in a suitable operator norm. For example, we can perform the transport sweep on
an approximate first order mesh [featuring planar faces] created from the second order mesh by dropping all nodes
on faces leading to L− L̄ 6= 0. In addition, with DFEM discretizations we want to make L̄ strictly lower triangular
and hence, whenever cyclic dependencies in the sweeping order or re-entrant faces are present the corresponding
terms are separated out into the remainder resulting in L− L̄ 6= 0. We also split the scattering operator S into
the zero-th moment part S0 and the high order scattering terms S− S0, which is zero when scattering is isotropic.
Nonzero S− S0 and/or L− L̄ imply that the high-order system cannot be reduced to a problem formulated only
in terms of the scalar fluxes, because the solution depends on significant angular fluxes or higher order angular flux
moments. In this case the high-order system will hold a state during the Picard iteration, i.e. it contains information
that goes beyond what the low order system saves. We use Φ in S0 to indicate that the zero-th scattering moment
only depends on the zero-th moment of the angular flux. Similarly we use Φ to indicate that fission only depends
on the zero-th moment of the angular flux because fission cross sections are isotropic. In a k-eigenvalue problem,
we have

L̄(Ψ∗, Ψ)− S0(Ψ
∗, Φ) + (L− L̄)(Ψ∗, Ψ)− (S− S0)(Ψ

∗, Ψ)− 1
k
F(Ψ∗, Φ) = 0. (284)

The Picard iteration algorithm for the steady-state source problem is illustrated in Algorithm 1. Similarly, The

Algorithm 1 Nonlinear diffusion acceleration algorithm for the steady-state source problem.

1: Initial solve of the low-order equation: bdiff(Φ
∗, Φ(0))−F0(Φ

∗, Φ(0)) = l(Φ∗).
2: n← 0.
3: while ε1 > tol do
4: Perform a transport update:

L̄(Ψ∗, Ψ(n+1))− S0(Ψ
∗, Φ(n)) + (L− L̄)(Ψ∗, Ψ(n))− (S− S0)(Ψ

∗, Ψ(n))−F(Ψ∗, Φ(n)) = l(Ψ∗). (285)

5: Solve the low-order equation with closures:

bdiff(Φ
∗, Φ(n+1))−F0(Φ

∗, Φ(n+1)) +C[Ψ(n+1)](Φ∗, Φ(n+1)) = l(Φ∗). (286)

6: evaluate ε1 =
∣∣∣Φ(n+1) −Φ(n)

∣∣∣ and ε2 =
∣∣∣∫S Ψ(n+1) dΩ−Φ(n)

∣∣∣
7: n← n + 1.
8: end while

Picard iteration algorithm for the k-eigenvalue problem is given in Algorithm 2. It should be pointed out that both
algorithms start with a full low-order solve in order to provide a reasonable initial guess of the scattering and fission
sources before the first transport update, thus potentially saving one costly transport update. We use the absolute
error to determine the convergence for illustration purposes. In reality we can use both absolute and relative errors
for detecting the convergence and we can also use various norms of the solution. Evaluation of ε2 is not necessary
but we found it is extremely useful for detecting any inconsistency between low-order and high-order solutions.

The stability of Picard iteration is affected by several factors: the choice of the diffusion coefficients in the low-order
system, the difference of the scalar flux space between high-order and low-order systems, the consistency between
the high-order and low-order systems, and the initial guess. As the initial guess is essentially provided by the
diffusion problem without high order correction, the difference of the stand-alone diffusion and transport solutions
may cause non-convergence of the Picard iterations. We have evidence [46, 68] that if the local diffusion coefficients
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Algorithm 2 Nonlinear diffusion acceleration algorithm for the k-eigenvalue problem.

1: Initial solve of the low-order equation: bdiff(Φ
∗, Φ(0)) = 1

k(0)
F0(Φ

∗, Φ(0)).
2: n← 0.
3: while ε1 > tol do
4: Perform a transport update:

L̄(Ψ∗, Ψ(n+1))− S0(Ψ
∗, Φ(n)) + (L− L̄)(Ψ∗, Ψ(n))− (S− S0)(Ψ

∗, Ψ(n)) =
1

k(n)
F(Ψ∗, Φ(n)). (287)

5: Solve the low-order equation with closures:

bdiff(Φ
∗, Φ(n+1)) +C[Ψ(n+1)](Φ∗, Φ(n+1)) =

1
k(n+1)

F0(Φ
∗, Φ(n+1)). (288)

6: evaluate ε1 =
∣∣∣Φ(n+1) −Φ(n)

∣∣∣ and ε2 =
∣∣∣∫S Ψ(n+1) dΩ−Φ(n)

∣∣∣
7: n← n + 1.
8: end while

are derived from the transport cross section, the FE function spaces used to represent the solutions are identical,
scattering is only mildly anisotropic and the material is only mildly heterogeneous the Picard iteration procedure is
unconditionally stable. The more deviation from these conditions, the higher the likelihood that the Picard iteration
algorithm becomes unstable.

The diffusion coefficient is essentially a free parameter in NDA schemes because in order to achieve consistency in a
projective sense the diffusion terms present in the bilinear form bdiff and C must cancel each other at convergence.
Hence, the choice of the diffusion coefficient does not affect consistency, but it does affect iterative convergence
properties and stability. Rattlesnake offers three options for evaluating the diffusion coefficient:

1. Compute the transport cross section at each required point Σtr,g(~r) with Eq. (20) from the total and P1 scat-
tering cross sections and compute the diffusion coefficient Dg as 1/(3Σtr,g). Note that in the general case of
differing transport and diffusion meshes, proper projection operators are required to compute the transport
cross section. Ref. [68] can be consulted for more details.

2. Like 1., but limit the value of the diffusion coefficient to a maximum value Dg = min
(
1/(3Σtr,g), Dmax

)
. This

is a simple measure the allow deployment of NDA in problems containing voids or near-voids.

3. Finally, the nonlocal diffusion tensor ~~Dg(~r) discussed in Section 2.2 can be used. Note, that in contrast to

straight diffusion problems using the NLTDC, NDA usually uses the pointwise NLTDC, i.e. ~~Dg(~r) continu-
ously depends on space. NLTDC used with NDA are discussed in [71, 49] for first order SN and second order
least-squares transport equations, respectively.

It should be mentioned for completeness that work outside Rattlesnake was performed studying optimal choices
of the diffusion coefficients for nonlinear diffusion acceleration. Most notably, [72] describes an optimally diffusive
CMFD method where the diffusion coefficient is selected based on Fourier analysis leading to a CMFD algorithm
that in all selected test problems outperforms CMFD and pCMFD; [73] searched for the optimized diffusion coeffi-
cient using a golden section search finding that the optimal diffusion coefficient performs very close to the optimally
diffusive CMFD method described in [72].

3.6.2 SAAF-CFEM-SN

We start deriving the consistent low-order weak form by first copying the balance equation for CTE with SAAF
(Eq. (93)) here: (

Φ∗,
∂

∂t

(
Φ

v

))
D
−
(
~∇Φ∗,~J

)
D
+ (Φ∗,L2Φ)D − (Φ∗,S0Φ)D + (Φ∗, (I− α)Jo)∂D +
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τ~∇Φ∗,
∂

∂t

(
~J
v

)
+ ~∇ · (~~EΦ) + L2~J− S1~J− ~Qext

1


D

=

(
Φ∗, Jinc

)
∂D

+
(
Φ∗, Qext

0
)
D .

We will denote the boxed momentum residual as

~r1 ≡
∂

∂t

(
~J
v

)
+ ~∇ · (~~EΦ) + L2~J− S1~J− ~Qext

1 . (289)

We remove the time-derivative terms and add the fission term for neutron transport. We also apply L2 − S0 =
L3 − Sd and end up with the steady-state neutron balance equation with SAAF:

−
(
~∇Φ∗,~J

)
D
+ (Φ∗,L3Φ)D − (Φ∗,SdΦ)D + (Φ∗, (I− α)Jo)∂D +

(
~∇Φ∗, τ~r1

)
D
− (Φ∗,F0Φ)D =(

Φ∗, Jinc
)

∂D
+
(
Φ∗, Qext

0
)
D . (290)

On the reflecting boundary ∂Dr, I− α = 0 and on the surface source boundary ∂Dv, I− α = I. If we assume ∂D =
∂Dr ∪ ∂Dv and assume that the Robin boundary ∂D3 corresponds to the surface source boundary and Newmann
boundary ∂D2 corresponds to the reflecting boundary, we have

−
(
~∇Φ∗,~J

)
D
+ (Φ∗,L3Φ)D − (Φ∗,SdΦ)D + (Φ∗, Jo)∂D3

+
(
~∇Φ∗, τ~r1

)
D
− (Φ∗,F0Φ)D =(

Φ∗, Jinc
)

∂D3
+
(
Φ∗, Qext

0
)
D . (291)

The steady-state neutron diffusion weak form with Jnet = 0 and e = 1
2 and without Dirichlet boundary condition is

then

bdiff(Φ
∗, Φ) ≡

(
~∇Φ∗,D~∇Φ

)
D
+

(
Φ∗,

1
4

Φ

)
∂D3

+ (Φ∗,L3Φ)D − (Φ∗,SdΦ)− (Φ∗,F0Φ)D , (292)

ldiff(Φ
∗) ≡

(
Φ∗, Jinc

)
∂D3

+
(
Φ∗, Qext

0
)
D . (293)

We can rearrange this as

bdiff(Φ
∗, Φ) +

(
~∇Φ∗, τ~r1 −~J−D~∇Φ

)
D
+

(
Φ∗, Jo − 1

4
Φ

)
∂D3

= ldiff(Φ
∗). (294)

We then define the drift vector D̂ as

~D ≡ τ~r1 −~J−D~∇Φ

Φ
, (295)

and the boundary coefficient γ as

γ ≡ Jo

Φ
− 1

4
I. (296)

Their expanded forms are

~Dg =

∫
S

(
τg~Ω~Ω · ~∇Ψg + (τgΣt,g − 1)~ΩΨg − τg ∑G

g′=1 Σg′→g
s,1

~ΩΨg′ − τg~ΩQext
g −Dg~∇Ψg

)
dΩ∫

S Ψg dΩ
, (297a)

γg =

∫
~Ω·~nb>0

∣∣∣~Ω ·~nb

∣∣∣Ψg dΩ∫
S Ψg dΩ

, g = 1, · · · , G. (297b)
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To avoid confusion, all variables in Eq. (297) are expanded with the angular fluxes, the solution of the transport
equation. It is noted that when there is no anisotropic scattering, no anisotropic external source and τg = 1

Σt,g
, drift

vector is simplified into

~Dg =

∫
S

(
1

Σt,g
~Ω~Ω · ~∇Ψg −Dg~∇Ψg

)
dΩ∫

S Ψg dΩ
. (298)

It is also noted that the drift vector is well-defined in void regions. With SN , the above angular integrations are
evaluated with the angular quadrature as

~Dg =
∑Nd

d=1 wd

(
τg~Ωd~Ωd · ~∇Ψg,d + (τgΣt,g − 1)~ΩdΨg,d − τg ∑G

g′=1 Σg′→g
s,1

~ΩdΨg′ ,d − τg~ΩdQext
g,d −Dg~∇Ψg,d

)
∑Nd

d=1 wdΨg,d
, (299)

γg =
∑~Ωd ·~nb>0 wd

∣∣∣~Ωd ·~nb

∣∣∣Ψg,d

∑Nd
d=1 wdΨg,d

, g = 1, · · · , G. (300)

It is worth mentioning that Jinc needs to be evaluated with angular quadrature as well because it is typically not
equal to the analytical integrated one. The above bilinear form becomes

bdiff(Φ
∗, Φ) +

(
~∇Φ∗, ~DΦ

)
D
+ (Φ∗, γΦ)∂D = ldiff(Φ

∗). (301)

So if we know the transport solution solution, we can evaluate the drift vector and the boundary coefficient, with
which a diffusion calculation reproduces the scalar flux of the transport solution. The drift term plus the additional
boundary term are the closure terms of the diffusion weak form. To fit our nonlinear iteration algorithm, we define

CSAAF[Ψ](Φ∗, Φ) ≡
(
~∇Φ∗, ~DΦ

)
D
+ (Φ∗, γΦ)∂D . (302)

With SAAF, we have an option if we want to include 〈Ψ∗,BΨ〉− in the L̄ operator. It is noted that in SAAF-CFEM-
SN NDA, low-order diffusion must currently be defined on the same mesh with the same shape functions as the
angular fluxes.

3.6.3 LS-CFEM-SN

Although the consistent diffusion scheme can be derived for LS-CFEM-SN as for SAAF-CFEM-SN, the resultant
diffusion scheme does not have a physical meaning. Also because LS-CFEM-SN does not have global conservation,
it is thus believed that the diffusion scheme directly from the diffusion equation should be used for NDA. The
low-order weak form with the LS closure should be in the same form as SAAF:

bdiff(Φ
∗, Φ) +

(
~∇Φ∗, ~DΦ

)
D
+ (Φ∗, κΦ)∂D = ldiff(Φ

∗). (303)

This form is called conservative. Numerical experiments shows that LS-NDA with this conservative low-order form
is stable and gives better convergence on k-effective. The drift vector in SAAF can be rearranged a little as:

~Dg =

∫
S

 τgΣtr,g

 1
Σtr,g

~Ω~Ω · ~∇Ψg − ∑
g′ 6=g

Σg′→g
s,1

~ΩΨg′ − ~ΩQext
g

+ (1− τgΣtr,g)
(
−~ΩΨg

)
−Dg~∇Ψg

 dΩ

∫
S Ψg dΩ

,

where the boxed terms appear as the weighted summation of two contributions: Eddington form

−
∫
S

1
Σtr,g

(
~Ω~Ω · ~∇Ψg −∑g′ 6=g Σg′→g

s,1
~ΩΨg′ − ~ΩQext

g

)
dΩ and the current form

∫
S
~ΩΨg dΩ. When τg = 1

Σtr,g
, we only

have the Eddington form. When τg = 0, we only have the current form. Based on this observation, Hans [49]
proposed a modified drift vector formulation for LS NDA:

~Dg =


∫
S

(
1

Σtr,g

(
~Ω~Ω·~∇Ψg−∑g′ 6=g Σg′→g

s,1
~ΩΨg′−~ΩQext

g

)
−Dg~∇Ψg

)
dΩ∫

S Ψg dΩ , Σtr,gh ≥ 0.01∫
S(−~ΩΨg−Dg~∇Ψg) dΩ∫

S Ψg dΩ , Σtr,gh < 0.01
, (304)
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where h is the characteristic length of the local element, typically the maximum vertex separation.

We also have an option if we want to include 〈Ψ∗,BΨ〉− in the L̄ operator as SAAF. Low-order diffusion must
currently be defined on the same mesh with the same shape functions as the angular fluxes as well.

3.6.4 DFEM-SN

The DFEM-SN NDA method allows for the low order problem to be discretized using fewer energy groups, using
a coarser mesh and using different FEM shape functions. Therefore, even at convergence, the scalar fluxes obtained
from the transport and diffusion system cannot be equal. The equality condition at convergence is generalized to the
requirement that at convergence the projection of the transport scalar flux into the diffusion solution space is equal
to the diffusion scalar flux. To distinguish transport and diffusion quantities, we use capital letters for the former
and lower case symbols for the latter. Defining a projection operator � [·], the consistency requirement becomes:

φ = � [Φ] , (305)

where � [·] can be obtained by requiring the left hand side of the above equation to be equal to the right hand side
when taking an inner product of both sides with resect to an arbitrary test function selected from the low order
space. The prolongation operator is denoted by �−1 and is defined equivalently to �. A more exhaustive discussion
of the projection and prolongation operators can be found in [68].

By using an angularly isotropic test function, the angular balance equation of the first order SN weak form is de-
rived:

−
(
~∇Φ∗,~J

)
+ (Φ∗,L2Φ) + ([[Φ∗]], [[Jo]])Γint

+ (Φ∗, Jo)∂Ds
− (Φ∗,S0Φ)− (Φ∗,F0Φ)

=
(

Φ∗, Jinc
)

∂Ds
+
(
Φ∗, Qext

0
)

. (306)

Jo,± on Γint are the partial out-going currents with respect to the two neighboring elements. Note that we derive
the weak forms for the source-driven, steady-state case. The consistent diffusion weak form is a modified interior
penalty (MIP) discontinuous FEM diffusion weak form augmented with closure terms and using e = 1

2 :

bdiff(φ
∗, φ)+ ([[φ∗]], [[κφ]])Γint

+
(
[[φ∗]], {{D~∇φ ·~n}}

)
Γint

+

(
φ∗,

φ

4

)
∂Ds

+ C [Ψ] (φ∗, φ) ,

=
(

φ∗,�
[
Jinc
])

∂Ds
+
(
φ∗,�

[
Qext

0
])

. (307)

where the closure is given by:

C [Ψ] (φ∗, φ) =
(
~∇φ∗, ~Dφ

)
+ ([[φ∗]], [[κ̂φ]])Γint

+ (φ, γφ)∂Ds
. (308)

The volume, interior face and boundary closure coefficients are computed by:

~D = −
D~∇� [Φ] + �

[
~J
]

� [Φ]
, (309a)

κ̂± =
� [Jo,±]

� [Φ±]
∓ [[κ� [Φ]]]

2� [Φ±]
− 1

� [Φ±]

(
1
4

φs ±
1
2
{{~n ·D~∇� [Φ]}}

)
γ =

� [Jo]

� [Φ]
− 1

4
I., (309b)

where the quantity Jo,± is defined as:
Jo,± = ∑

±~Ωn ·~nb<0

wn|~Ωn ·~nb|Ψ±n , (309c)

and the face scalar flux is defined by:

φs =
{{�[Φ]D/h}}
{{D/h}} . (309d)
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Recall that the normal in this situation points from the upstream to the downstream face, i.e. from − to +. We
compute the cross sections for the diffusion problem via flux weighted averages under the projection operator �.
To distinguish the diffusion from the transport cross section, we add a ·̂ to the diffusion cross sections; the diffusion
groups are indexed with p.

• Removal cross section: Σ̂r,p =
�[Σt,gΦg]−�[Σ

g→g
s,0 Φg]

�[Φg]
,

• Scattering cross section: Σ̂p′→p
s,0 =

�

[
∑

g∈p
Σg′→g

s,0 )Φg′

]
�
[
Φg′

] ,

• Fission production cross section: νΣ̂ f ,p =
�[νΣf,gΦg]
�[Φg]

,

• Fission spectrum: χ̂p =

�

[
χg

(
∑
g′

νΣf,g′Φg′

)]

�

[
∑
g′

νΣf,g′Φg′

] .

It is important to avoid introducing spurious information when updating the transport scalar fluxes after a diffusion
solve. An update formula must ensure that only the fraction of the transport FEM solution that is within the range
of the diffusion FEM space is altered. We use the following update formula:

Φ← Φ + �−1 [φ− � [Φ]] . (310)

3.7 Multi-scheme interface conditions

Multi-resolution transport is a concept in which the spatial solution domain is divided into several subdomains
where various discretization schemes with different angular, space, energy resolutions can be applied [74, 75, 76,
77, 78, 79, 80]. Multi-resolution is motivated by the recognition that uniform fine resolution over the full solution
domain is unfeasible for realistic problems in a foreseeable future. Uniform fine resolution is also seldom required
because of the existing homogenization methods. On the other hand, fine-scale resolution in places where interest-
ing multiphysics phenomena take place is desired, either because of unavailability of accurate homogenization or
the loss of information due to homogenization. The computational resources can be much more efficiently managed
by concentrating the main efforts (and resolution) on the most important subdomains while still taking into account
the coupling with other less important regions of the domain. Thus, it makes sense to apply different resolutions
suitable for subdomains and solve them as a whole without iterations over the interface quantities.

In practice, various discretization schemes with possible different meshes, angular orders and/or number of groups
are simultaneously handled in Rattlesnake. To enable multi-resolution or multi-scheme capability, we need to
handle the interface coupling in space, angle and energy properly. The interface conditions in the weak forms will
be presented. In all of these conditions, we assume embedded energy structures across two neighboring resolutions,
i.e. any group in these two scales is either a subset or completely outside of another group. Spatial coupling are
implemented via the general mortar FEM and the interface kernel capability available in MOOSE and are out of the
scope of this manual. Although users are allowed to amend the interface conditions with the properties defined on
interfaces, such as discontinuity factors from the generalized homogenization theory [81], this section will only talk
about the nominal conditions.

Discrete ordinates methods (SN) are suitable for handling heterogeneous problems due to the decoupling of angular
variables in the streaming operators, while the spherical harmonics expansion methods (PN) typically generate more
accurate results with the same number of unknowns for problems with significant homogenization. It is believed
that regions of different levels of homogenization can be treated most efficiently with hybrid SN-PN calculations.
Multi-scheme transport is thus typically implemented in the way of hybrid SN-PN calculations. Hybrid SN-PN
calculations have been studied in the past [74, 75, 76, 77, 78, 79, 33]. Among them [74, 75, 78, 79] looked at the one-
dimensional case and [76, 77] focused on the coupling between VNM (variational nodal method) with PN and SNM
(SN nodal method), both of which are locally conservative. [33] presents a hybrid SN-P1 method in two-dimension
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with the upwinding scheme for coupling diffusion to transport, while the interface condition for P1 is naturally
imposed with the nonlinear iteration scheme.

We propose two distinct methods for imposing the interface condition within the domain decomposition frame-
work: (1) Lagrange multipliers and (2) classical upwinding scheme [82]. The Lagrange multiplier method enforces
the continuity of angular flux moments across the interface by introducing the Lagrange multipliers defined over
the interface. This approach creates a saddle point problem and is considered only for CFEM schemes, such as
LS and SAAF. The upwinding method has been studied in the past at the element level in the discontinuous FEM
for radiation transport [83]. It has also been applied previously for hybrid transport algorithms. The upwinding
method solves the equations for each subdomain imposing surface source boundary conditions provided from their
neighbors. It preserves the causality inherent to the hyperbolic nature of particle transport on the subdomain inter-
face at the price of introducing asymmetry in the streaming operator. It is noted that the upwinding method can be
applied to transport schemes including first-order discontinuous schemes, etc., other than SAAF and LS.

3.7.1 Lagrange multiplier method

We directly give the interface condition in the weak form with Lagrange multiplier method:

−
∫
S
[([[Ψ]], Λ∗)Γ + ([[Ψ∗]], Λ)Γ] dΩ, (311)

where Γ is the interface. This condition is added on top of the bilinear forms of all subdomains. It is noted that the
function space of solutions and test functions in each individual bilinear forms are defined only over the correspond-
ing subdomains. Thus the solutions such as the scalar fluxes across interfaces are allowed to be discontinuous. For
instance in Fig. 3, there are three bilinear forms for three subdomains, and three interface conditions are required for
three domain interfaces. The jump operator [[Ψ]] is defined with respect to the interface norm ~n, whose orientation

1
2

3

Figure 3 Domain decomposition.

can be absorbed in the Lagrange multipliers Λ and its test functions Λ∗ thus do not affect the calculation,

[[Ψ]] ≡Ψ+ −Ψ−, (312)

Ψ± ≡ lim
s→0+

Ψ(~x + s~n). (313)

Lagrange multipliers Λ have the same physical meaning as ~Ω ·~nΨ. So
∫
S Λ dΩ =~J ·~n, which can be used to prove

the subdomain-wise balance. Lagrange multipliers are defined over Γ.

3.7.1.1 SN-PN

The two neighboring subdomains are denoted as DSN and DPN. On DSN, we solve the equation in a given set
of directions specified by an angular quadrature

{
~Ωd, wd, d = 1, · · · , Nd

}
. On DPN, we let Ψ be expanded using
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spherical harmonics up to order N. The angular flux in this space can be represented as Ψ = ~Φ(~x)~R(~Ω), where ~Φ

contains the angular flux moments of all groups and ~R is the spherical harmonics ~Y times the normalization factors,
i.e.

~R = P~Y, (314)

where P =
(∫
S
~Y~YTdΩ

)−1
is a diagonal matrix containing the normalization factors characteristic of the selected

spherical harmonics functions. Since the dimension of the PN angular space is typically smaller than M, we fix the
SN side as the master and make the unit normal vector on the interface~n always point towards the SN side.

We select the Λ and Λ∗ from the same angular space as the SN solution. On the SN side this yields,

G

∑
g=1

Nd

∑
d=1

wd

((
Ψg,d, Λ∗g,d

)
Γ
+
(

Ψ∗g,d, Λg,d

)
Γ

)
, (315)

while on the PN side we obtain:

−
G

∑
g=1

(
Nd

∑
d=1

wd

(
~Φg~R(~Ωd), Λ∗d

)
Γ
−
(
~Φ∗g, P~Λg

)
Γ

)
, (316)

where ~Λg is the Lagrange multiplier moments of the energy group g. It is noted that if the angular quadrature
can integrate spherical harmonics up to order NSN > N, the first term in Eq. (315) and Eq. (316) will ensure the
continuity of the angular flux moments. It also will cause all the flux moments evaluated on the SN side with order
being greater than N and less than or equal to NSN to be zero. However, the above interface condition creates non-
smooth PN solutions close to the interface based on observations in numerical experiments. Numerical evidence
shows that the Lagrange multiplier moments ~Λ needs to be evaluated with the inverse of the moment-to-direction
matrix M−1 instead of the above direction-to-moment matrix D. Refer to Appendix E.1 for more information. This
interface condition is implemented in SNPNConstraint. The total number of constrains is M× G.

3.7.1.2 PN-PN

PN schemes are applied on both neighboring subdomains denoted as 1 and 2. PN orders of two subdomains L1 and
L2 may be different but we always assume L1 ≥ L2. We fix the side of subdomain 1 as the master and make the unit
normal vector on the interface ~n always point towards the master side. We select Λ and Λ∗ from the angular space
as the PN solution with order L1. Because of the spherical harmonics orthogonality, this results into

G

∑
g=1

(
∑

L2
`=0 ∑`

m=−`

((
[[Φg,`,m ]],Λ∗g,`,m

)
Γ
+
(
[[Φ∗g,`,m ]],Λg,`,m

)
Γ

)
+

∑
L1
`=L2+1 ∑`

m=−`

((
Φ−g,`,m ,Λ∗g,`,m

)
Γ
+
(

Φ−∗g,`,m ,Λg,`,m

)
Γ

)
)

(317)

The first part of the interface condition is EqualValueConstraint, which is part of MOOSE. The second part of the
condition is implemented in ZeroValueConstraint, which is more like a boundary condition. The total number of
constraints is the number of angular moments with order L1 times the number of energy groups G. Diffusion
schemes can be treated as P0.

3.7.1.3 SN-SN

We currently do not allow different orders of SN to interface with each other. The same SN order results into M×G
EqualValueConstraint constraints.

G

∑
g=1

Nd

∑
d=1

[(
[[Ψg,d]], Λ∗g,d

)
Γ
+
(
[[Ψ∗g,d]], Λg,d

)
Γ

]
. (318)

The master side can be fixed on either side.
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3.7.2 Upwinding

The classical upwinding scheme basically uses the angular flux of the neighboring subdomain as the surface source
for the current domain. As the result, we have an interface term similar to the DG term in DFEM: − 〈[[[Ψ∗]]], Ψ−〉Γ.
In order to use the jump notation with the surface normal~n for the interface condition, we transform it into

〈[[[Ψ∗]]], Ψ−〉Γ
=
∫
S

(∣∣∣~Ω ·~n∣∣∣ [[[Ψ∗]]], Ψ−
)

Γ
dΩ pull angular integration

=
∫
S

(∣∣∣~Ω ·~n∣∣∣ [[Ψ∗]], Ψ−
)

Γ+
dΩ−

∫
S

(∣∣∣~Ω ·~n∣∣∣ [[Ψ∗]], Ψ+
)

Γ−
dΩ split interface

= 〈[[Ψ∗]], Ψ−〉+Γ − 〈[[Ψ∗]], Ψ+〉−Γ half angular integration notation

So the interface condition with upwinding is

−
〈
[[Ψ∗]], Ψ−

〉+
Γ +

〈
[[Ψ∗]], Ψ+

〉−
Γ . (319)

This condition preserves the causality inherent to the hyperbolic nature of particle transport on the subdomain
interface at the price of introducing asymmetry in the streaming operator. No variable defined over the interface is
required with upwinding. It is recommended to use an odd PN order for the upwind coupling.

3.7.2.1 SN-PN

We apply the same SN and PN discretizations as before and make the unit normal vector on the interface ~n always
point towards the SN side. On the SN side we obtain:

G

∑
g=1

 ∑
~Ωd ·~n<0

wd

(∣∣∣~Ωd ·~n
∣∣∣Ψ∗g,d, Ψg,d

)
Γ
− ∑

~Ωd ·~n>0

wd

(∣∣∣~Ωd ·~n
∣∣∣Ψ∗g,d, ~Φg~R(~Ωd)

)
Γ

 . (320)

and on the PN side we get

G

∑
g=1

((
~Φ∗g, L(~n)~Φg

)
Γ
−
(
~Φ∗g,~jg

)
Γ

)
, (321)

where

L(~n) ≡
∫
~Ω·~n>0

~R(~Ω)~RT(~Ω)
∣∣∣~Ω ·~n∣∣∣ dΩ, (322)

~jg ≡ ∑
~Ωd ·~n<0

wd

∣∣∣~Ωd ·~n
∣∣∣ ~R(~Ωd)Ψg,d. (323)

As opposed to the Lagrange multiplier method, numerical results indicate that angular smoothing is not required
with upwinding. On the other hand, numerical tests show that the discrete version of L

L̄(~n) ≡ ∑
~Ωd ·~n>0

wd~R(~Ωd)~RT(~Ωd)
∣∣∣~Ωd ·~n

∣∣∣ , (324)

gives better results. It is noted that both L(~n) and L̄(~n) are symmetric and depend on ~n. However, their eigen-
structures do not depend on ~n and thus are rotationally invariant. The direct meaning of Eq. (320) and Eq. (321) is
that the coupling from PN to SN is performed by sampling the streaming directions with the angular quadrature
from the PN angular moments, while the coupling from SN to PN is the Marshak boundary condition with the
partial angular moments obtained from the SN out-going angular fluxes. This interface condition is implemented
in the interface kernel InterfaceSNPNUpwind.
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3.7.2.2 SN-SN

We solve the equation in a given set of directions specified by an angular quadrature
{
~Ωd, wd, d = 1, · · · , Nd

}
with

SN . If the angular quadratures on two adjacent subdomains are the same, the discretized version of the upwinding
interface condition can simply be:

G

∑
g=1

− ∑
~Ωd ·~n>0

wd

(∣∣∣~Ωd ·~n
∣∣∣ [[Ψ∗g,d]], Ψ−g,d

)
Γ
+ ∑

~Ωd ·~n<0

wd

(∣∣∣~Ωd ·~n
∣∣∣ [[Ψ∗g,d]], Ψ+

g,d

)
Γ

 . (325)

This condition is the traditional upwinding scheme for the DFEM transport [83]. This interface condition is imple-
mented in the interface kernel InterfaceUpwind.

3.7.2.3 PN-PN

If we plug Ψ = ~Φ~R(~Ω) into Eq. (319) we can see that

−
〈
[[~Φ∗~R(~Ω)]], ~Φ−~R(~Ω)

〉+
Γ
+
〈
[[~Φ∗~R(~Ω)]], ~Φ+~R(~Ω)

〉−
Γ

=−
(
[[~Φ∗]], L+(~n)~Φ−

)
Γ
+
(
[[~Φ∗]], L−(~n)~Φ+

)
Γ

=

(
[[~Φ∗]],

L+ + L−

2
[[~Φ]]− (L+ − L−){{~Φ}}

)
Γ

(326)

We show that the above formulation is closely related to the upwinding in PN-DFEM. PN-DFEM upwinding is based
on the eigenstructure of streaming matrices. The interface weak form can be rewritten as:

−
∫
S

(
~Ω ·~n[[Ψ∗]], Ψn

)
Γ

dΩ

=
(
[[~Φ∗]],−(L+ − L−)~Φn

)
Γ

PN expansion

=
(
[[~Φ∗]],−(M+ −M−)~Φn

)
Γ

Eigen decomposition

=
(
[[~Φ∗]],−(M+~Φ− −M−~Φ+)

)
Γ

PN upwinding

=
(
[[~Φ∗]], M++M−

2 [[~Φ]]− (M+ −M−){{~Φ}}
)

Γ
Rearrangement

=

(
[[~Φ∗]],

M+ + M−

2
[[~Φ]]− (L+ − L−){{~Φ}}

)
Γ

(327)

where Ψn is the numerical flux to be determined by the upwinding scheme. M± is constructed with the eigenvalue
decomposition of L. We first let

L+ − L− = UΛUT , (328)

where Λ is the diagonal matrix whose diagonal elements are the eigenvalues of L+ − L−. U is a matrix whose
columns are the eigenvectors of L+ − L−. We separate Λ into

Λ = Λ+ −Λ−, (329)

where Λ+ contains only the positive eigenvalues of Λ and Λ− contains the magnitude of the negative eigenvalues.
We then define

M± = UΛ±UT . (330)

It is clear that

L+ − L− = M+ −M−. (331)

This form of interface condition is also referred to as Roe-type Riemann solver. Both Eq. (326) and Eq. (327) are
implemented in the interface kernel InterfacePNUpwind.
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3.8 Reduced order model for NTE

It is often desired to create a reduced order model (ROM) from the FEM weak forms with a function space in which
the solution is sought having a reduced dimensionality. Because the dimensionality can be significantly reduced for
particular applications, computing efforts with ROM can be drastically decreased. ROM is particularly useful when
repeated calculations are required, such as uncertainty quantification, online monitoring (inverse problem), acceler-
ation for the existing calculations, etc. The reduced function space can be generated with snapshots of calculations
of a scope of training models with the assumption that solutions of new models can be interpolated well with the
snapshots. The reduced function space can also be generated with eigen modes or with perturbation theory at a
particular configuration.

To perform the derivation, we first give the abstract weak form for the transient NTE as

d
dt
T(Ψ∗, Ψ) =F(Ψ∗, Ψ)−L(Ψ∗, Ψ) + S(Ψ∗, Ψ)−

I

∑
i=1
Fd,i(Ψ

∗, Ψ) +
I

∑
i=1
Sd,i(Ψ

∗, Ci), (332)

d
dt
(C∗i , Ci)D =(C∗i ,PiΦ)D − (C∗i , λiCi)D , i = 1, · · · , I, (333)

where T, F, L, S, Fd,i, Sd,i are the time, fission, loss due to streaming and collision, scattering, delayed fission and
delayed source kernels of the flux Ψ. We split the weak form into flux Ψ∗ and I-group delayed neutron precursors
C∗i , i = 1, · · · , I. It is noted that because the test function is arbitrary in the function space, this split does not change
the weak form. We make the test functions time-independent.

In particular, for SAAF, we have:

T(Ψ∗, Ψ) ≡
(
(I+ τL1)Ψ

∗,
Ψ

v

)
, (334a)

F(Ψ∗, Ψ) ≡ ((I+ τL1)Ψ
∗,FΨ) , (334b)

L(Ψ∗, Ψ) ≡− ((I+ τL1)L1Ψ∗, Ψ) + ((I+ τL1)Ψ
∗,L2Ψ) + 〈Ψ∗, Ψ〉+ − 〈Ψ∗,BΨ〉− −

(
τ′tL1Ψ∗,

Ψ

v

)
, (334c)

S(Ψ∗, Ψ) ≡ ((I+ τL1)Ψ
∗,SΨ) , (334d)

Fd,i(Ψ
∗, Ψ) ≡ ((I+ τL1)Ψ

∗,Fd,iΨ) , (334e)
Sd,i(Ψ

∗, Ci) ≡ ((I+ τL1)Ψ
∗,CiCi) . (334f)

It is noted that with SAAF, the steady-state adjoint DNP concentration is C∗i = χT
d,i(Φ

∗ + τ~∇ ·~J∗) but not χT
d,iΦ

∗.
If Ψ∗ = 1, isotropic and constant in space,~J∗ = 0, C∗ = χT

d,iΦ
∗ = 1, consistent with the analytical adjoint DNPs.

Likewise, with CFEM-Diffusion, the abstract weak form becomes:

T(Φ∗, Φ) ≡
(

Φ∗,
Φ

v

)
D

, (335a)

F(Φ∗, Φ) ≡ (Φ∗,F0Φ)D , (335b)

L(Φ∗, Φ) ≡
(
~∇Φ∗,D~∇Φ

)
D
+

(
Φ∗,

1
2

eΦ

)
∂D3

+ (Φ∗,L3Φ)D , (335c)

S(Φ∗, Φ) ≡ (Φ∗,SdΦ)D , (335d)
Fd,i(Φ

∗, Φ) ≡ (Φ∗,Fd,i,0Φ)D , (335e)

Sd,i(Φ
∗, Ci) ≡ (Φ∗,CiCi)D . (335f)

The primal variable are the scalar fluxes for the diffusion equation, but we can still use Ψ as the notation of the
solution and Ψ∗ as the test function. All weak forms of the NTE can be written into this abstract form.

Now we can assume the solution can be expanded with Ψ = ~Bn, where ~B = {b1, · · · , bN} and N is the dimension
of ROM. n contains the solution coefficients with dimension N. All bs are in the same function space as Ψ of the
weak form. N is much smaller than the dimension of the original weak form function space. Similarly we also
have a test function space ~B∗ =

{
b∗1 , · · · , b∗N

}
with the the same dimension. Any test function in the space can be

expressed as Ψ∗ = ~B∗n∗. The solution and test spaces with the reduced dimentionality are not necessarily identical.
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We also expand the delayed neutron precursors as Ci = ~Cici and C∗i = ~C∗i c∗, where ~Ci = {Ci,1, Ci,2, · · · , Ci,N} and
~Ci =

{
C∗i,1, C∗i,2, · · · , C∗i,N

}
. We typically let the dimension of the DNP spaces be the same as the flux dimension N.

It is typical to let the DNP basis of the test space be the function of the basis of Ψ∗, for example, C∗i,j = χT
d,i
∫
S (b

∗
j +

τL1b∗j ) dΩ with SAAF and C∗i,j = χT
d,ib
∗
j with CFEM-Diffusion. Thus we have

Sd,i(Ψ
∗, Ci) =(C∗i , λiCi)D , (336a)

Fd,i(Ψ
∗, Ψ) =(C∗i ,PiΦ)D . (336b)

Then we substitute the solution and the test function in the weak form and obtain the following ODE:

d
dt

(
T(~B∗,~B)n

)
=

(
(F−L− S)(~B∗,~B)−

I

∑
i=1
Fd,i(~B

∗,~B)

)
n +

I

∑
i=1
Sd,i(~B

∗, ~Ci)c,

d
dt

(
(~C∗i , ~Ci)Dci

)
=(~C∗,PiB)n− (~C∗i , λi~Ci)Dci, i = 1, · · · , I.

If we define n̄ = T(~B∗,~B)n and c̄i = (~C∗i , ~Ci)Dci, after some arrangement, we obtain

dn̄(t)
dt

=(A(t)−
I

∑
i=1

Bi(t))T−1(t)n̄(t) +
I

∑
i=1

Ci(t)c̄i(t), (337a)

dc̄i(t)
dt

=Bi(t)T−1(t)n̄(t)− Ci(t)c̄i(t), i = 1, · · · , I, (337b)

where

A(t) =(F−L− S)(~B∗,~B),
Bi(t) =Fd,i(~B

∗,~B),

T(t) =T(~B∗,~B),

C(t) =(~C∗i , λi~Ci)D(~C∗i , ~Ci)
−1
D . (337c)

Once the solution and test spaces are constructed, all of the coefficient matrices can be evaluated at any time t. We
further re-define A, B and T with a factoring matrix to give them a better physical meaning:

A(t) =(F−L− S)(~B∗,~B)F(~B∗,~B)−1, (337d)

Bi(t) =Fd,i(~B
∗,~B)F(~B∗,~B)−1, (337e)

T(t) =T(~B∗,~B)F(~B∗,~B)−1. (337f)

This completes the derivation of ROM for NTE. The matrices A, Bi, T and C depends on cross sections. If the cross
sections can be expressed as analytical function of time, these matrices can be analytical as well.

When N = 1, we end up with the so-called PKE (point-kinetics equation) parameters. A becomes the reactivity
and Bi, i = 1, · · · , I are the effective fractions for all DNP groups, T becomes the mean generation time and C is
the effective decay constant. If T(~B∗,~B) is time independent, for example with diffusion, both ~B and velocities are
time-independent, we can scale the above PDE with T−1(~B∗,~B) to obtain:

dn
dt

=T−1(A−
I

∑
i=1

Bi)n +
I

∑
i=1

C̄ici, (337g)

dci
dt

=T−1Bin− C̄ici, i = 1, · · · , I, (337h)

where ci is redefined as T−1(~C∗i , ~Ci)Dci and C̄i ≡ T−1CiT. If we do not expand the delayed neutron precursors, the
equations are

dn̄
dt

=(A−
I

∑
i=1

Bi)T−1n̄ +
I

∑
i=1
Sd,i(~B

∗, Ci), (338a)

d
dt
(C∗i , Ci)D =(C∗i ,Pi~BT−1n̄)D − (C∗i , λCi)D , i = 1, · · · , I. (338b)

Thus we only apply ROM on part of the system. A few applications of ROM are given in the following subsections.
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3.8.1 Dumping the PKE parameters during a spatial kinetics calculation

In this case, we simply set the dimension of flux to one. We use the adjoint steady-state solution as the test function
and let the actual solution normalized with total fission production n as the reduced function space. We define

n(t) =F(Ψ̄∗, Ψ) (339a)
ci(t) =(C∗i , Ci)D . (339b)

Ψ̄∗ does not have to be Ψ∗. If it is set to I, n(t) will be the total fission source. We also set the normalized DNP
concentrations as the reduced DNP function space. The reduced PKE is

d (Λn)
dt

= (ρ− βeff) n +
I

∑
i=1

λici, (339c)

dci
dt

= βeff,in− λici, i = 1, · · · , I, (339d)

where

ρ =
(F−L− S)(Ψ∗, Ψ)

F(Ψ̄∗, Ψ)
, (339e)

βeff,i =
Fd,i(Ψ

∗, Ψ)

F(Ψ̄∗, Ψ)
, (339f)

Λ =
T(Ψ∗, Ψ)

F(Ψ̄∗, Ψ)
, (339g)

λ =
(C∗i , λCi)D
(C∗i , Ci)D

, (339h)

βeff =
I

∑
i=1

βeff,i. (339i)

All of these quantities n, ρ, Λ, (ci, βeff,i, λ, i = 1, · · · , I) can be evaluated once the solution Ψ is obtained at every
time step with a given fixed Ψ∗. If the same time integration as the spatial kinetics calculation is used for solving
the PDE with the dumped parameters, the same scalar neutron population and DNP concentrations are expected.

3.8.2 Multi-region PKE parameters

The original development of this section was motivated by generating the PKE parameters for coupled reactors [84].
We reproduce the derivation here with minor notation improvements. The idea can be generalized into the ROM
framework.

We split the entire domain into N non-overlapping subdomains and let ∪N
m=1Dm = D. We define subdomain

bilinear forms using the diffusion fission bilinear form as an example

Fm(Ψ
∗, Ψ) ≡ (Ψ∗,FΨ)Dm

. (340)

We can define similarly Sd,m,i(Ψ
∗, Ci) and Fd,m,i(Ψ

∗, Ψ). We then evaluate Ψm given the solution Ψ and C such that
∀Ψ∗ ∈W0

d
dt
T(Ψ∗, Ψm) +L(Ψ∗, Ψm)− S(Ψ∗, Ψm) =

Fm(Ψ
∗, Ψ) −

I

∑
i=1
Fd,m,i(Ψ

∗, Ψ) +
I

∑
i=1
Sd,m,i(Ψ

∗, Ci) , (341)

where the Ψm are referred to as the partial fluxes from the fission source in sub-region m. We can easily see that
Ψ = ∑N

m=1 Ψm. We can obtain the same partial fluxes for adjoint solutions.
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If we assume equilibrium, i.e. the cross sections do not deviate from those of the initial steady state, we have:

Fm(Ψ
∗
n, Ψ) = L(Ψ∗n, Ψm)− S(Ψ∗n, Ψm) = Fn(Ψ

∗, Ψm), (342)

where Ψ and Ψm are the forward solutions and Ψ∗ and Ψ∗n are the adjoint solutions. Eq. (342) states that the inner
product over region m of the full forward flux and the partial adjoint flux of region n is equal to the inner product
over region n of the full adjoint flux and the partial forward flux of region m. We refer to this equation as reciprocity
relation.

We can apply the partial adjoint solution Ψ∗n in Eq. (341) as the test function and assume the equilibrium condition:

d
dt
T(Ψ∗n, Ψm) = Fm(Ψ

∗
n, Ψ)

−
I

∑
i=1
Fd,m,i(Ψ

∗
n, Ψ)−Fn(Ψ

∗, Ψm) +
I

∑
i=1
Sd,m,i(Ψ

∗
n, Ci). (343)

The streaming and scattering bilinear forms L and S do not appear in the equilibrium condition, which makes the
final equation much simpler. We will have N × N of these equations. If we define

nn ≡ Fn(1, Ψ), (344)

Ψ̄∗n ≡
Fn(Ψ∗, Ψ)

nn
, (345)

Λn,m ≡
T(Ψ∗n, Ψm)

Fn(Ψ∗, Ψm)
, (346)

nn,m ≡
Fn(Ψ∗, Ψm)

Ψ̄∗n
, (347)

ρn,m,j ≡
Fm(Ψ∗n, Ψj)

Fm(Ψ∗, Ψj)
· Ψ̄∗m

Ψ̄∗n
, (348)

where nn is the total neutron production rate in sub-region n; Ψ̄∗n is the averaged importance of region n; Λn,m, ρn,m,j
are the coupled-reactor point kinetics parameters; nn,m is the fractional neutron production rate, and we define

ci,n,m ≡
(C∗i,n, Ci)Dm

Ψ̄∗n
, (349)

βeff,i,n,m ≡
Fd,m,i(Ψ

∗
n, Ψ)

Fm(Ψ∗n, Ψ)
, (350)

λi,n,m ≡
Fd,m,i(Ψ

∗
n, Ci)

Cm,i(Ψ∗n, Ci)
, (351)

βeff,n,m ≡
I

∑
i=1

βeff,i,n,m, (352)

where ci,n,m is the partial n adjoint weighted DNP concentration in sub-region m, or the inner product over Dm of
the partial adjoint DNP concentrations of n and the forward DNP concentration of group i. βeff,i,n,m and λi,n,m are
weighted fractions and decay constants of DNPs and we assume Ψ̄∗n to be time-independent, we have

d
dt

(Λn,mnn,m) =
N

∑
j=1

ρn,m,jnm,j − βeff,n,mnn,m − nn,m

+
I

∑
i=1

λi,n,mci,n,m, (353)

dci,n,m

dt
= βeff,i,n,mnn,m − λi,n,mci,n,m, (354)

n, m = 1, · · · , N; i = 1, · · · , I.

The reactivity equation in Ref. [85] is given by

ρn,m ≡
nn,m

nm
=

nn

nm
· Fn(Ψ∗, Ψm)

Fn(Ψ∗, Ψ)
, (355)
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which is different from our formulations derived from the weak form. They provide more characterizations for the
coupled reactor. However, we can prove that

N

∑
j=1

ρn,m,jnm,j = ρn,m

N

∑
j=1

nm,j, (356)

i.e. ρn,m is a lumped value of ρn,m,j, j = 1, · · · , N. It is noted that the reactivities do not depend on the cross sections
other than the fission cross section because of the equilibrium condition we applied in Eq. (343). Delayed neutron
fractions and DNP decay constants are assumed as constant in Ref. [85], so we do not compare with them. We can
lump the DNP equations to

dci,m

dt
= βeff,i,mnm − λi,mci,m, i = 1, · · · , I, (357)

with the following definitions:

ci,m ≡
N

∑
n=1

Ψ̄∗n
Ψ̄∗m

ci,n,m, (358)

βeff,i,m ≡
Fd,m,i(Ψ

∗, Ψ)

Fm(Ψ∗, Ψ)
, (359)

λi,m ≡
Dm,i(Ψ

∗, Ci)

Dm,i(Ψ∗, Ci)
. (360)

If we assume

ci,n,m

ci,m
=

nn,m

nm
, or

Fm(Ψ∗n, Ψ)

Fm(Ψ∗, Ψ)
=
Fd,m,i(Ψ

∗
n, Ψ)

Fd,m,i(Ψ∗, Ψ)
, (361)

which is true when delayed spectrum is the same as the prompt spectrum, Eq. (353) can be rewritten into

d
dt

(Λn,mnn,m) = ρn,m(1− βeff,m)
N

∑
j=1

nm,j − nn,m

+ ρn,m

I

∑
i=1

λi,mci,m, (362)

Eq. (362) and Eq. (357) is the same as the equations in Ref. [85].

3.8.3 Improved quasi-static

Improved quasi-static (IQS) [86, 87] is a spatial kinetics time-integration method that involves factorizing the flux
solution into a time-dependent amplitude and a space- and time-dependent shape. It is believed that time depen-
dence of the shape is weaker than that of the flux itself, thus we can use a much smaller time step size for amplitude
and a relatively large step size for shape to achieve a comparable accuracy of solving directly with the smaller time
step size. We refer to the smaller time step as the micro step and to the shape evaluation time step as the macro
step. Because the cost of solving the PKE – a small ODE system – for the amplittude is trivial comparing to solving
for the shape, the overall computing time is expected to drop significantly. The two-time scale solution process, a
micro scale for the amplittude and a macro scale for the shape, is illustrated in Fig. 4.

Based on this idea, the solution is factored as

Ψ(~x, t) = n(t)ψ(~x, t), (363a)

where

n =
T(ψ∗, Ψ)

T(ψ∗, Ψ0)
, (363b)

99



3.8 Reduced order model for NTE Rattlesnake Theory Manual

Figure 4 IQS method visualization.

ψ =
T(ψ∗, Ψ0)

T(ψ∗, Ψ)
Ψ, (363c)

where ψ∗ is a time-independent weighting function satisfying equilibrium adjoint DNP condition. Thus

T(ψ∗, ψ) = T(ψ∗, Ψ0). (364)

This condition also makes the factorization unique. We define

ci =

(
C∗i , Ci

)
T(ψ∗, ψ)

, i = 1, · · · , I. (365)

Substituting Eq. (363a) and Eq. (365), the PKE equation with the weighting function ψ∗ reads

dn
dt

=
ρ− βeff

Λ
n +

I

∑
i=1

λici, (366a)

dci
dt

=
βeff,i

Λ
n− λici, i = 1, · · · , I, (366b)

with the PKE parameters evaluated as

ρ =
(F−L− S)(ψ∗, Ψ)

F(ψ∗, Ψ)
, (366c)

βeff,i =
Fd,i(ψ

∗, Ψ)

F(ψ∗, Ψ)
, (366d)

Λ =
T(ψ∗, Ψ)

F(ψ∗, Ψ)
, (366e)

λi =
(C∗i , λiCi)D
(C∗i , Ci)D

, (366f)

βeff ≡
I

∑
i=1

βeff,i. (366g)

It is noted that we can directly use the full solution Ψ to evaluate ρ, βi, i = 1, · · · , I and Λ instead of ψ because they
differ from each other only by a scalar normalization factor n. It is also noted that we dropped 1

T(ψ∗ ,ψ)
dT(ψ∗ ,ψ)

dt n
because of the normalization condition in Eq. (364). The initial condition is

n(t = t0) = 1, (366h)

ci(t = t0) =

(
C∗i , C0

i
)

T(ψ∗, Ψ0)
=

βeff,i

λiΛ

∣∣∣∣
t=t0

. (366i)

The shape function satisfies

d
dt
T(Ψ∗, ψ) =F(Ψ∗, ψ)−L(Ψ∗, ψ) + S(Ψ∗, ψ)−

I

∑
i=1
Fd,i(Ψ

∗, ψ) +
I

∑
i=1
Sd,i(Ψ

∗,
1
n

Ci)−
1
n

dn
dt
T(Ψ∗, ψ), (367a)

d
dt
(C∗i , Ci)D =(C∗i , nPiφ)D − (C∗i , λiCi)D , i = 1, · · · , I, (367b)
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with the original initial condition. If we let the test function be the weighting function, we see

1
n

dn
dt
T(ψ∗, ψ)

=(
ρ− βeff

Λ
+

I

∑
i=1

λi
ci
n
)T(ψ∗, ψ)

=
(F−L+ S)(ψ∗, Ψ)−∑I

i=1Fd,i(ψ
∗, Ψ)

T(ψ∗, Ψ)
T(ψ∗, ψ) +

I

∑
i=1
Sd,i(ψ

∗,
1
n

Ci)

=F(ψ∗, ψ)−L(ψ∗, ψ) + S(ψ∗, ψ)−
I

∑
i=1
Fd,i(ψ

∗, ψ) +
I

∑
i=1
Sd,i(ψ

∗,
1
n

Ci).

Substituting it into Eq. (367a), we obtain

d
dt
T(ψ∗, ψ) = 0, (368)

which means that T(ψ∗, ψ) does not change with time. We also can see that if we include 1
T(ψ∗ ,ψ)

dT(ψ∗ ,ψ)
dt n in

the PKE equation, we end up with a singular flux system. n is like a Lagrange multiplier enforming the condi-
tion Eq. (368). The equations of flux shape ψ and DNPs Ci, i = 1, · · · , I and amplitude equations Eq. (366) of
n, ci, i = 1, · · · , I are coupled nonlinearly.

It has been found that evaluation of DNPs without considering the amplitude change at micro steps results in a
less accurate solution. An analytical representation of the precursors is proposed as follows. Using an exponential
operator, the precursor equation can be analytically solved as:

Ci(t) = Ci(told)e−λi(t−told) +
∫ t

told

n(t′)Piφ(t′)e−λi(t−t′)dt′, i = 1, · · · , I,

where

n(t′)Piφ(t′) = n(t′)βi(t′) f (t′).

If we assume βi and the fission source shape f are linearly varying in time as

n(t′)Piφ(t′) = n(t′)
(

t′ − told
t− told

βi(t) +
t− t′

t− told
βi(told)

)(
t′ − told
t− told

f (t) +
t− t′

t− told
f (told)

)
,

we have the analytical expression for Ci(t):

Ci(t) = Ci(told)e−λi∆t + (a3βi(t) + a2βi(told)) f (t) + (a2βi(t) + a1βi(told)) f (told), (369a)

where the integration coefficients are defined as:

a1 =
∫ t

told

(
t− t′

∆t

)2

n(t′)e−λ(t−t′)dt′, (369b)

a2 =
∫ t

told

(t′ − told)(t− t′)
(∆t)2 n(t′)e−λ(t−t′)dt′, (369c)

a3 =
∫ t

told

(
t′ − told

∆t

)2

n(t′)e−λ(t−t′)dt′. (369d)

The amplitude n(t) can be taken as piecewise linear within micro steps. If number of micro steps is one, n(t′) and
the linear shape of fission source can be merged and we retrieve back the original equation Eq. (140a) with linear
power and exponential integration.

We can use Picard iterations to solve the coupled equations as in Algorithm 3. It has been found that the simple
predictor-corrector approach as detailed in Algorithm 4 can yield good results.
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Algorithm 3 Nonlinear Picard iteration for IQS at a time step t.

1: iter = 0.
2: while ε > tol or iter < maxiter do
3: Evaluate PKE parameters at t with Eq. (366c) to Eq. (366f) with Ψ(t = told).
4: Perform micro PKE solves with the the linearly interpolated PKE parameters.
5: Solve for flux equation Eq. (367a) and DNPs with Eq. (369).
6: Evaluate the error

ε =
T(Ψ∗, Ψ)−T(Ψ∗, Ψ0)

T(Ψ∗, Ψ0)
(370)

7: iter = iter + 1.
8: end while

Algorithm 4 Predictor-corrector for IQS at a time step t.

1: Solve the equation Eq. (332).
2: Normalize the solution to obtain the shape ψ(t) with Eq. (364).
3: Evaluate PKE parameters at t with Eq. (366c) to Eq. (366f).
4: Perform micro PKE solves with the the linearly interpolated PKE parameters.
5: Obtain the corrected solution as Ψ = n(t)ψ(t) and evaluate DNPs with Eq. (369).

In multiphysics calculations [88], other physical quantities, such as temperature, are affected by reaction rates and
subsequently affect the operators of the flux equations. For IQS, this feedback affects both the shape equation
and the parameters of the PRKE; thus, it is an additional nonlinear component to the already non-linear shape-
amplitude equations. Each of these components have different temporal behaviors; so it may be beneficial for
efficiency to evaluate them on different time scales. The amplitude is more rapidly varying than the shape which is
computationally expensive to obtain and is evaluated only on macro-time steps. In multiphysics simulations, one
may take advantage of a fine-scale power distribution in the coupled physics components (temperature). We have
an intermediate step to update other physical quantities and the affected PKE parameters.
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4 Rattlesnake Design

4.1 Relation to libMesh/MOOSE

Rattlesnake is a MOOSE-based radiation transport application, while MOOSE provides a multiphysics modeling
and simulation (M&S) environment bridging physics and the underlying mesh framework provided by libMesh.
These dependencies are reflected by the repository structures, where MOOSE is a required submodule of Rat-
tlesnake and libMesh is a required submodule of MOOSE. The roles of each of them from bottom to top are de-
scribed below.

The libMesh library is a C++ FEM framework. It offers mesh related operations, including build-in mesh generation,
mesh loading with various mesh formats including ExodusII, GMV, Gmsh, VTK, etc., mesh partitioning with Metis,
Parmetis, Hilbert, etc., and various mesh modification utilities. libMesh supports mixed types of 1D, 2D and 3D
elements. It provides dimension agnostic definitions of finite element families and quadratures for assembling
the algebraical system. It also interacts with PETSc, Trilinos and SLEPSc for sparse linear algebra. All of these
capabilities are enabled on serial and parallel platforms.

MOOSE is a multiphysics framework primarily developed by Idaho National Laboratory (INL). It provides a high-
level interface to some of the most sophisticated nonlinear solver technology on the planet. MOOSE presents a
straightforward API that aligns well with the real-world problems scientists and engineers (who are not necessarily
advanced mathematicians or computer scientists) need to tackle. Every detail about how an engineer interacts
with MOOSE has been thought through, from the installation process through running simulations on state of the
art supercomputers. MOOSE integrates all the plugable interfaces, including kernels, auxkernels, postprocessors,
materials, etc., which can be specific for each physics. MOOSE provides generic tools for application developers to
describe the system and interact with libMesh and the underlying solvers.

Rattlesnake is a radiation transport solver for the multigroup linear Boltzmann radiation transport equation. It mod-
els interactions of radiation particles such as neutron, thermal photon, etc., with background materials. It provides
various discretization schemes, including the self-adjoint angular flux (SAAF) and least squares (LS) formulation
with continuous finite element method (FEM) and the first-order formulation with discontinuous FEM. The angular
discretization can be applied with the discrete ordinates method (SN), the spherical harmonics expansion method
(PN) or using the diffusion approximation. All these schemes are leveraged with the multi-scheme capability by al-
lowing the assignment of more suitable schemes on various subdomains with different levels of resolution in order
to optimize the use of computing resources. Rattlesnake solves steady-state, transient and eigenvalue problems with
arbitrary order of scattering anisotropy. It also inherits all the features provided by the MOOSE framework, includ-
ing unstructured higher-order meshes, massive parallelization, dimension agnosticism, etc. Rattlesnake is designed
for multiphysics simulations. Its applications to the fully-coupled multiphysics simulation and the tightly-coupled
multiphysics simulations with data transfer have been both successfully demonstrated. It interacts with YAKXS,
a multigroup cross section library management toolkit, for incorporating the cross sections generated with lattice
physics codes. Rattlesnake relies on the material properties describing how radiation particles interact with back-
ground media and field variables like the temperature and the material density to compute various quantities of
interests, including the radiation flux distribution, reaction rates, radiation-induced power profile, etc. These can
be provided to the analyst or to other physics for multiphysics simulations.

This design enables an efficient and powerful development environment. Developments in MOOSE/libMesh can
benefit all physics. On the other hand, particular capabilities required by one physics can typically enhance the
simulation of other physics. For example, mortar FEM capabilities can be used both by solid mechanics for contact
problems and by radiation transport for multi-scheme applications. While MOOSE and libMesh developers are
typically working on their specific needs, it does not prevent them from benefiting other areas. It has been com-
monly seen that application developers send patches to the framework for fixing defects or adding new capabilities
and vice-versa. This pattern enables large projects otherwise infeasible by a few developers. IThe code structure
also encourages the modularity of code development, resulting in much more readable and maintainable codes.
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4.2 Transport system actions

Rattlesnake is faced with a unique challenge not present in other physics such as solid mechanics, fluid dynamics,
etc. In multigroup (or multiband) radiation transport, because of the seven-dimensional phase space, the number
of variables is typically significantly larger than in these other physics, sometimes thousands of times larger. Con-
sequently, adding all the variables, kernels, auxiliary variables, postprocessors with the MOOSE syntax5 would be
too tedious and error prone to be a valid option. It becomes crucial – if not indispensable – to use the action system
provided by MOOSE for adding variables and MOOSE objects automatically with a simplified and dedicated input
syntax.

There are also other reasons for using the action system in Rattlesnake. In particular, we can provide additional
options for controlling how the MOOSE objects are added. For example, we can have an option to switch the
discretization schemes used for solving the transport equation, so that users do not have to do this manually. As a
result, chances of input errors can be significantly reduced. MOOSE objects frequently interact with materials and
executioners (or solvers). Action systems can be used to automatically set up necessary parameters for materials and
executioners based on the options in use for setting up the transport system. Rattlesnake’s action system provides
defaults for many advanced parameter so the user does not need to have expert knowledge of radiation transport
algorithms.

The desired user inputs for setting up the transport system are now explained. As showed in Section 2, the input
file should describe

1. what particle the transport system is for;

2. what the equation type (e.g. steady-state source or eigenvalue, or transient) is;

3. the material properties with transport materials;

4. the volumetric external source with mesh blocks if any;

5. boundary conditions (type and the non-homogeneous part if any) with mesh side sets.

All the weak forms were detailed in Section 3. Rattlesnake’s transport action system also allows the discretization
schemes to be defined on sub-domains, thus allowing the user to specify different discretization methods on differ-
ent parts of the domain. In such cases, the sub-domain boundary with side sets need to be specified and appropriate
boundary conditions need to be applied thereon. We could also have multiple schemes on the sub-domains. When
two sub-domains with different schemes share an interface, proper interface conditions for these two schemes need
to be imposed.

The Rattlesnake input syntax follows the hierarchical structure of the particle transport problem. One or more
TransportSystems are defined, each of which contains one or more discretization blocks. A discretization block is
associated with one or more subdomains. The TransportSystems block contains input parameters pertinent to all
the discretization blocks, such as the equations type, the number of energy groups, etc.; in contrast a discretization
block contains parameters that pertain to the discretization itself: the quadrature type and order for SN methods,
the PN order, the FE family and order etc. The following listing includes the commonly used parameters. The
complete list of parameters can be found in Rattlesnake user manual.

[TransportSystems]
particle = |common|neutron|thermal|...|
equation_type = |steady-state|transient|eigenvalue|
G = <integer number greater than 0>
VolumetricSourceBlock = <vector of block names>
VolumetricSource = <vector of real numbers>
VolumetricSourceFunc = <vector of transport solution functions>
PointSourceValue = <real number>
PointSourceLocation = <x, y and z coordinates of the point source>
VacuumBoundary = <vector of side set names>

5The MOOSE syntax is the input syntax with which each individual variable either primal or auxiliary, user object, postprocessor, kernel
either primal or auxiliary, boundary condition, etc. can be added.
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SurfaceSource = <vector of transport solution functions>
ReflectingBoundary = <vector of side set names>
WhiteBoundary = <vector of side set names>
DirichletBoundary = <vector of side set names>
DirichletFunction = <vector of transport solution functions>
for_adjoint = <logical>
for_math_adjoint = <logical>

[./scheme1]
scheme = SAAF-SN-CFEM [We use this scheme as an example]
block = <vector of block names> [The blocks these scheme is applied on]
verbose = |0|1|2|3| [Control the screen print-out]
prefix = <string> [Name prefix of all added MOOSE objects]
prefix_variables = <string> [Name prefix of all added MOOSE variables]
material_prop_namesapce = <string> [Name prefix of all material properties in use]
group_collapsing = <vector of integer numbers> [The coarse group index of all fine groups]
family = |LAGRANGE|MONOMIAL|...| [Shape function type]
order = |CONSTANT|FIRST|SECOND|...| [Shape function order]
group_weights = <vector of real numbers> [Optional group weightings]
collapse_scattering = <logical> [To evaluate scattering sources for kernels]
balance_table = <logical> [True to add postprocessors for the balance table]
balance_table_on = |linear|timestep_end|...| [When balance table should be evaluated]
fixed_jacobian = <logical> [If Jacobian is changing during Newton iterations]

[../]
[./scheme2]

[All parameters for the scheme defined on another set of blocks]
[../]

[]

NeutronDiffusionCFEMAction

NeutronTransportAction

MultigroupTransportBaseAction

CommonTransportAction

EquationDescription

Action

DiffusionCFEMAction

DiffusionAction

Figure 5 Action for setting up neutron diffusion with CFEM.

Fig. 5 shows the six-level inheritance graph of the action system for setting up a neutron diffusion system with
CFEM. First of all, at the root of this graph is the MOOSE Action. Any action setting up a transport system, or trans-
port system action (TSA), is a MOOSE Action. It can be invoked or driven with a defined input syntax. And it can be
(and it is) invoked multiple times by multiple tasks. The action can know which task is invoking it by checking its
member variable _current_task. All TSAs can be invoked by the following tasks: after_mesh_setup, before_add_variable,
add_variable, add_user_object, add_postprocessor, add_kernel, add_bc, add_aux_material, set_coupling_matrix, and after_everything.
Among them, add_variable, add_user_object, add_postprocessor, add_kernel, add_bc are the existing MOOSE tasks. The
other ones are specifically registered by Rattlesnake. after_mesh_setup is used for some mesh related setups. be-
fore_add_variable is used for adding necessary objects before adding variables. For example, adding the angular
quadrature should happen in this task because Rattlesnake needs the number of directions in the quadrature to
add the appropriate angular fluxes variables. add_aux_material is used to add some auxiliary materials after the
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normal materials are added. For instance, the stabilization parameter used by SAAF-SN for each material is treated
as an auxiliary material and added at this stage. set_coupling_matrix is used to specify a desired pattern in the off-
diagonal terms of the Jacobian for preconditioning purposes. after_everything is the final task before the beginning
of the solve. We currently use it to print the summary of the action. The detailed ordering of all tasks including
the above mentioned can be checked with the task dependency graph in the source code, or using the show_actions
option in the Debug block in the input files.

There is a total of six levels of actions above MOOSE action. One level above it is the EquationDescription action,
whose valid parameters are the parameters in the TransportSystems block of the input. These parameters describe
the transport equation and are passed into the derived actions. Operations for setting up the global system –
for example setting some parameters for the executioner, adding the postprocessor for eigenvalue, etc. – can be
implemented here. The interaction with Executioner happens in the first level of the previous 6-level action system.
Interactions with the material system to set the proper material parameters for simplifying the input syntax are
performed at this level. It is also where the multi-scheme interface conditions are added.

Immediately on top of EquationDescription is the MultigroupTransportBaseAction. Its valid parameters contain those
from EquationDescription and some more basic parameters for setting up a transport system. It contains the block
where the system is defined on and the number of energy groups to be added by the action. It provides some
utility functions to consistently enforcing some naming conventions or the verbose level. It also defines functions to
retrieve information such as all the materials, finding the blocks and side sets restricted to subdomains and to each
transport system, etc. It acts based on two sets of virtual function calls: one for CTE and another for particle related
terms, which need to be implemented in the specific derived (and otherwise empty) classes. Some information
describing what the action has added is printed on the screen at the end of the action, depending on the verbose
level.

Fig. 6 (the doxygen page with the focus on CommonTransportAction) gives some insight regarding the purpose of
CommonTransportAction. It provides the material property names for CTE. It specifies if we want to evaluate the
ingroup scattering sources and use them in the kernels. This level of action also specifies what shape functions will
be used for the primal variables. It states if we want to create the balance table for our simulations. All of the CTE
operators shared by all different discretization schemes should go here.

CommonTransportAction

DiffusionAction

PNAction

SNAction

MultigroupTransportBaseActionEquationDescriptionAction

DiffusionCFEMAction

DiffusionDFEMAction

NeutronDiffusionCFEMAction

RadiationDiffusionCFEMAction

NeutronDiffusionDFEMAction

DFEMPNAction

LSPNAction

SAAFPNAction

RadiationDFEMPNAction

NeutronLSPNAction

NeutronSAAFPNAction

DFEMSNAction

LSSNAction

SAAFSNAction

NeutronDFEMSNAction

NeutronLSSNAction

NeutronSAAFSNAction

RadiationSAAFSNAction

Figure 6 Common transport action.

The next level of inheritance is for the angular discretization as shown in Fig. 5 and Fig. 6. Three are currently sup-
ported: diffusion, PN and SN . CFEM diffusion and DFEM diffusion share a lot of kernels and boundary conditions.
This level of action is the perfect place for these common kernels and BCs. The next level is the combination of
angular and spatial discretizations. This level is complete for setting up a CTE.

NeutronTransportAction is directly derived from MultigroupTransportBaseAction because it requires utilities provided
in MultigroupTransportBaseAction. It handles fission related objects for NTE. However it is not complete by itself
for setting up a NTE. It has to be inherited by the six levels of action in Fig. 5 for setting up NTE with a particular
discretization scheme. At first glance, Fig. 5 seems to show a diamond inheritance. This situation is avoided by
using C++ virtual inheritance. When an object of NeutronDiffusionCFEMAction is created, virtual inheritance of
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MultigroupTransportBaseAction ensures that only one MultigroupTransportBaseAction object will be created and that
all derived objects are pointing to it.

The full picture of the currently implemented actions is given in Fig. 7. We only have neutron, and thermal radiation

EquationDescription MultigroupTransportBaseActionAction

CommonTransportAction NeutronTransportAction

RadiationTransportAction

DiffusionAction

PNAction

SNAction

DiffusionCFEMAction

DiffusionDFEMAction

NeutronDiffusionCFEMAction

RadiationDiffusionCFEMAction

NeutronDiffusionDFEMAction

DFEMPNAction

LSPNAction

SAAFPNAction

RadiationDFEMPNAction

NeutronLSPNAction

NeutronSAAFPNAction

DFEMSNAction

LSSNAction

SAAFSNAction

NeutronDFEMSNAction

NeutronLSSNAction

NeutronSAAFSNAction

RadiationSAAFSNAction

Figure 7 Full picture of all action for setting up transport systems.

transport at this moment and thermal radiation transport is only working with diffusion, SAAF-SN and DFEM-PN.

One last question would be to know how the sub-blocks of TransportSystems in the input add the required TSA. For
each syntax, MOOSE creates an action which is statically associated with the syntax. We cannot associate our TSAs
like the NeutronDiffusionCFEMAction with the syntax, otherwise multiple TSAs would be added and we would
have to guard the action so that they can act only when the scheme parameter is in agreement with the action type.
In Rattlesnake, we implemented something called action of actions or meta action.

We have another meta action, AddTransportSystemAction, which is the action associated with the sub-blocks of Trans-
portSystems. It will check the parameter scheme and import the parameters in TransportSystems block to generate the
proper TSA into the action warehouse on the fly. To do so, all valid TSAs need to be registered in it. It is noted that
this action should not be used for interacting with Executioner, because Executioner is a global object, while this
action is block restricted. All the valid parameters for a particular scheme can be dumped with the discretization
name, such as SAAF-CFEM-SN, DFEM-SN, etc.

For code developing, we should always think first where we should put your codes. We should always protect your
codes with mooseErrors when it is not supposed to work with some optional parameters or when some capabilities
have not been implemented.

4.3 Extendable neutronic materials

Rattlesnake creates a base material MultigroupTransportMaterial for all transport materials. The class accepts 11
private parameters to indicate how the material properties should be declared and evaluated. These private pa-
rameters are set by the transport systems. For this reason, a transport material can only be used for one transport
system. These private parameters are:

• ngroup - number of energy groups or frequency bands.

• forDiffusion - a logical parameter to ask the derived material to either evaluate diffusion coefficients and re-
moval cross sections or total cross sections.

• for_transport_update - a logical parameter valid only when forDiffusion is false. It tells the derived material to
evaluate the diffusion coefficients and transport cross sections, which are to be used for evaluating the drift
vectors.

• diffusion_coefficient_scheme - an enumeration which controls how the diffusion coefficients are to be evaluated.
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• forAdjoint - a logical parameter to control if the scattering matrix should be transposed.

• allowVacuum - a logical parameter to tell the derived material if a check to ensure non-zero total cross section
is needed.

• computingNA - cut-off order of scattering anisotropy.

• forPN - a logical parameter to tell the derived material to evaluate extra properties on sides for PN methods.

• forLS - a logical parameter to tell the derived material to evaluate extra properties on sides for LS methods.

• namespace - a prefix of all material property names to avoid chances of conflict (since two objects cannot be
given the same name).

It also have 6 normal parameters:

• speed_required - a logical parameter to tell the derived material that particle speed properties should be de-
clared and evaluated.

• isMeter - a logical parameter to tell the derived material if the mesh is in unit of meters (as opposed to cen-
timeters).

• disp_x - the nodal variable for the x-displacement. It is valid for Cartesian coordinate only.

• disp_y - the nodal variable for the y-displacement. It is valid for Cartesian coordinate only with a dimension
greater than 1.

• disp_z - the nodal variable for the z-displacement. It is valid for Cartesian coordinate with a dimension greater
than 2 and RZ coordinate.

• disp_r - the nodal variable for the r-displacement. It is valid for R spherical coordinate and RZ coordinate.

The density ratio with respect to the original density on the undisplaced mesh on the quadrature points are eval-
uated by the function computeDensityRatio() of this base material. It also declares a real property named after the
material name to facilitate getting the blocks where this material is defined on. Immediately derived from this
material are NeutronicsMaterial and TRMaterial. The inheritance graph can be seen in Fig. 8.

All neutronics materials declare a set of material properties, which are listed in Table 45. This list could be useful for
advanced users who want to utilize those properties for postprocessing. They are declared on the blocks where the
materials are defined. Diffusion coefficients are evaluated on element faces for diffusion calculations. Total cross
sections are evaluated on element faces for PN and LS. sigma_scattering_n<l> and neutron velocities are evaluated
for PN .

YAKXS is a general toolkit for managing the multigroup cross sections for neutron transport calculations developed
along with Rattlesnake. It provides an XML cross section library format for storing multigroup cross sections.
YAKXS provides operations like cross section interpolation, mixing, fitting, collapsing, etc. Users and developers
are insulated from the complexity of these operations and interact with YAKXS’ high-level interfaces. YAKXS
contains ten C++ classes and one Utility sub-namespace:

1. Utility sub-namespace collects a set of useful data structures and functions for cross section processing, like
converting an isotope name to its material number, getting the default class of an isotope, etc.

2. MultigroupLibrary holds the raw data loaded from a library in YAKXS format. It comes along with manipula-
tors, accessors and writers. MultigroupLibrary can be outputted into and be constructed from a data file in the
YAKXS XML or binary format.

3. MixingTable regulates the raw data for the mixing operation. It holds the microscopic cross sections at a
particular state. MixingTable can be constructed from MultigroupLibrary through a selection or interpolation
operation.
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Table 45 Neutronics material properties.

Name Notation Type Declared if
neutron_speed_g<g> vg Real Transienta

neutron_speed vg, g = 1, · · · , G std::vector<Real> Transient
diffusion_coefficient_g<g> Dg Real Diffusionb

diffusion_coefficient Dg, g = 1, · · · , G std::vector<Real> Diffusion
vector_diffusion_coefficient_g<g> Dg RealVector Diffusion
vector_diffusion_coefficient Dg, g = 1, · · · , G std::vector<RealVector> Diffusion
tensor_diffusion_coefficient_g<g> Dg RealTensor Diffusion
tensor_diffusion_coefficient Dg, g = 1, · · · , G std::vector<RealTensor> Diffusion
sigma_removal_g<g> σr,g Real Diffusion
sigma_removal σr,g, g = 1, · · · , G std::vector<Real> Diffusion
sigma_total_g<g> σt,g Real NotDiffusionc

sigma_total σt,g, g = 1, · · · , G std::vector<Real> NotDiffusion
sigma_scattering_g<p>_g<g> σ

p→g
s,l , l = 0, · · · , L std::vector<Real> ScatteringPatternd

sigma_scattering
σ

p→g
s,l ,p,g=1,··· ,G;

l = 0, · · · , L std::vector<CSR<Real>> NonzeroScatteringe

phase_function_g<p>_g<g> pp→g(µ) PhaseFunction pointer UsingPhaseFunction f

sigma_scattering_for_
phase_func_g<p>_g<g> σ

p→g
s,phase Real UsingPhaseFunction

nu_sigma_fission νσf ,g, g = 1, · · · , G std::vector<Real> Fissileg

nu_sigma_fission_g<g> νσf ,g Real Fissile
kappa_sigma_fission κσf ,g, g = 1, · · · , G std::vector<Real> Fissile & Plush

kappa_sigma_fission_g<g> κσf ,g Real Fissile & Plus
sigma_fission σf ,g, g = 1, · · · , G std::vector<Real> Fissile & Plus
sigma_fission_g<g> σf ,g Real Fissile & Plus
fission_spectrum χp,g, g = 1, · · · , G std::vector<Real> Fissile & Plus
chi_g<g> χg Real Fissile & FissionPatterni

beta_i<i> βi Real Fissile & I > 0j

lambda_i<i> λi Real Fissile & I > 0
chi_delay_i<i> χg,i, g = 1, · · · , G std::vector<Real> Fissile & Plus
chi_delay_g<g> χg,i, i = 1, · · · , I std::vector<Real> Fissile & FissionPattern
sigma_nalpha_g<g> σα,g Real Providedk

sigma_nalpha σα,g, g = 1, · · · , G std::vector<Real> Provided
sigma_capture_g<g> σc,g Real Provided
sigma_capture σc,g, g = 1, · · · , G std::vector<Real> Provided
sigma_absorption_g<g> σa,g Real Plus
sigma_absorption σa,g, g = 1, · · · , G std::vector<Real> Plus

a Transient means that the problem is transient;
b Diffusion means that scheme is equal to CFEM-Diffusion or DFEM-Diffusion;
c NotDiffusion means that scheme is equal to any other than CFEM-Diffusion and DFEM-Diffusion;
d ScatteringPattern means that the property will be declared for the non-zero scattering entries;
e NonzeroScattering means that there is scattering for this material. For diffusion calculations, this means that there is cross-group scatterings
because in-group scatterings are merged into total as removal cross sections and thus never used;
f If scattering phase functions are used;
g Fissile means that the material is fissile;
h Plus means that additional properties are required;
i FissionPattern means that the property will be declared for the group with non-zero fission neutron yields;
j I > 0 means that I is greater than 0; Note that the material has to be fissile to provide delayed neutron data;
k Provided means that the cross section data is provided by the input;
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MultigroupTransportMaterial
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Figure 8 Full picture of all transport materials.

4. Mixture contains the macroscopic cross sections, which can be directly used by the transport solvers. Mixture
can be outputted into a data file in the INSTANT XML format. However, mixture is not constructed from a
data file in the INSTANT XML format.

5. MixedMultigroupLibrary contains the macroscopic cross sections of all state points in MultigroupLibrary. Mixed-
MultigroupLibrary can be obtained from MultigroupLibrary through mixing or folding operations. If a folding
operation is performed, new variables will be introduced and the atomic density dependency on these new
variables is folded into the generated library. MixedMultigroupLibrary can be outputted into and constructed
from a data file in the YAKXS XML or binary format.

6. InputXS is one of the macroscopic cross section holders. InputXS provides constant macroscopic cross sections
to transport solvers. InputXS can be constructed from Mixture. InputXS can be outputted into a data file in the
INSTANT XML format and can be constructed from a data file in the INSTANT XML format.

7. PerturbedInputXS is one of the macroscopic cross section holders. PerturbedInputXS provides to transport
solvers a simple model for cross sections with various feedback effects. PerturbedInputXS can be constructed
from a RELAP-5 input file containing the cross sections data with all the perturbation coefficients or from a
MixedMultigroupLibrary through fitting.

8. FunctionInputXS is one of the macroscopic cross section holders. Every cross section can be a function varying
in space and time.

9. YAKXSCreator is designed for cross section generators to create the multigroup library in YAKXS format.

10. TransmutationLibrary holds the raw data loaded from a transmutation library.

11. WorkingTransmutationLibrary contains the preprocessed data from TransmutationLibrary which can be used for
transmutation calculations directly. The number of isotopes in the WorkingTransmutationLibrary does not have
to be the full list of isotopes in the TransmutationLibrary, from which the working library are generated.

All of them are included in YAKXS namespace. Cross section processing capabilities are built with the classes and
utility functions. The relations among these classes are illustrated in Fig. 9. Rattlesnake neutronics materials interact
with YAKXS for loading the cross sections and evaluate the material properties required for neutron transport
calculations.
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Figure 9 Graphical view of YAKXS.
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The derived class then interacts with YAKXS to bring the nuclear data in and evaluate the properties on quadrature
points based on them. For example of ConstantNeutronicsMaterial, which can load a macroscopic cross section
file in INSTANT XML format and construct a YAKXS object in type of InputXS. ConstantNeutronicsMaterial then
passes the request from the base class to InputXS object to obtain the macroscopic cross sections. Another example is
MixedNeutronicsMaterial, which loads a multigroup library in YAKXS XML format and construct an object in type
of MultigroupLibrary. This neutronics material is then simply do the interpolation and mixing with a fixed set of grid
values and atomic densities and generate an object in type of Mixture. MixedNeutronicsMaterial then passes the
request from the base class to Mixture object to obtain the macroscopic cross sections. A more sophisticated material
is CoupledFeedbackNeutronicsMaterial, which loads a multigroup library in YAKXS XML format and construct an
object in type of MultigroupLibrary similarly as MixedNeutronicsMaterial. It, however, can couple other variables
in and use their values on quadrature points to generate the Mixture on the fly. Thus the variable dependent cross
sections can be evaluated. RoddedNeutronicsMaterial can be used to handle the control-rod movements. Mate-
rial names with MatID in it are for the materials who can load multiple data as a whole and branch the data with
the local material ID of elements. The materials are highly extendable for particular usage. For instance, Buckled-
ConstantNeutronicsMaterial is almost identical to ConstantNeutronicsMaterial but have an extra input parameter,
buckling, to alter the removal or total cross sections in ConstantNeutronicsMaterial.

4.3.1 Flux-Corrected On-The-Fly Group Condensation

With the multigroup approximation, fine-group cross sections are typically pre-condensed using a fixed fine spec-
trum within each energy group. For clarity, we will refer to the energy groups for multigroup calculations as the
coarse energy groups. It is noted that fine and coarse here are relative, i.e. fine-group does not mean hundreds of
groups in lattice physics and coarse-group is not necessarily few groups. In real settings, the fine spectrum might
differ significantly from the spectrum used for pre-condensation, for example near a moving strong neutron ab-
sorber, making the coarse group cross sections and solutions less accurate. If we assume that the change in fine
spectrum is smooth, and it thus can be represented by interpolating fluxes across coarse groups, we can construct
a fine spectrum better representing reality. This better spectrum can then be used to condense the group cross
sections, which in turn produce improved coarse group solutions. We call this concept on-the-fly group condensa-
tion. On-the-fly group condensation can potentially produce significantly more accurate solutions than the coarse
group solutions without costly fine group calculations. It can be seen that on-the-fly group condensation introduce
a nonlinear effect of the fluxes to the residual, but this effect is typically not strong enough to adversely affect the
convergence of the employed PJFNK solver in Rattlesnake. On-the-fly group condensation is handled by the base
class MultigroupTransportMaterial. The required information for group condensation such as the fine spectrum,
group structure, etc. are provided by the derived materials. The key of the on-the-fly group condensation is how to
properly prolong the coarse group fluxes and use them to correct the fine spectrum. We adapted the same procedure
in Ref. [89] for modifying the fine spectrum as:

fcorrected,g = fg
(Π−1Φ)g

(Π−1Π f ))g
, g = 1, · · · , G, (371)

where G is the number of fine groups. Π is the projection operation to project fine group solutions onto coarse
groups

Π( fg, g = 1, · · · , G) = ∑
g∈p

fg, p = 1, · · · , P. (372)

P is the number of coarse groups. g ∈ p means that energy range of fine group g is within the coarse energy group p.
It is noted that the fine groups are embedded in coarse groups, i.e. energy range of any fine group does not extend
to more than one coarse energy ranges. Π−1 is the prolongation operation to prolong coarse groups solutions to
fine groups solutions. We currently implemented two schemes for the prolongation. The first scheme assumes the
fine spectrum is linear with respect to energy E in each coarse groups:

f (E) =
Fp−1/2 + Fp+1/2

2
+ (Fp−1/2 − Fp+1/2)

2(E− Ēp)

∆Ep
, E ∈

[
Ep−1/1, Ep+1/2

]
(373a)

Ēp =
Ep−1/2 + Ep+1/2

2
, (373b)

∆Ep = Ep−1/2 + Ep+1/2, (373c)
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Fp+1/2 =


3 F1

∆E1
− F2

∆E2
, p = 0

Fp
∆Ep +

Fp+1
∆Ep+1

2 , 1 ≤ p < P
3 FP

∆EP
− FP−1

∆EP+1
, p = P

, p = 0, · · · , P, (373d)

then the fine group spectrum is evaluated as

fg =
f (Eg−1/2) + f (Eg+1/2)

2
∆Eg. (373e)

We use F to denote the quantity to be prolonged. Rattlesnake refers this scheme as LinearESimple. This scheme is
identical to the Piecewise Linear φ(E) scheme in Ref. [89]. The second scheme uses piece-wise second order functions
with respect to lethargy u = log E to fit the spectrum within each coarse group

f (u) =
Fp

∆up
+ bp

2(u− ūp)

∆up
+ cp

1
2

(
3(

2(u− ūp)

∆up
)2 − 1

)
, u ∈

[
up−1/1, up+1/2

]
, (374a)

ūp =
up−1/2 + up+1/2

2
, (374b)

∆up = up−1/2 + up+1/2. (374c)

We choose to user lethargy instead of energy for fitting because the typical energy ranges are more evenly dis-
tributed in lethargy. The 2P unknown coefficients bp, cp, p = 1, · · · , P are evaluated with the following 2P con-
straints:

c1 = cP = 0, (374d)

f+(up+1/2) = f−(up+1/2), p = 1, · · · , P− 1, (374e)

∂u f+(up+1/2) = ∂u f−(up+1/2), p = 1, · · · , P− 1. (374f)

Superscript + and −mean that the quantity is evaluated with Eq. (374a) in the plus and minus energy range. Once
the coefficients are obtained, fine groups spectrum is evaluated as

fg =
∫ ug+1/2

ug−1/2

f (u) du. (374g)

Rattlesnake refers this scheme as LogESpline. It relies on users to provide the fine spectrum and to choose the
prolongation scheme for obtaining accurate solutions.

4.3.2 Cusping Treatment

Rattlesnake provides RoddedNeutronicsMaterial for simulating control rod movement by defining different cross
section regions in a subdomain along the direction of control rod motion. The most chellenging part of this capabil-
ity is to handle the cusping effect. Cusping arises from control rods that are partially inserted into a mesh element.
In the following it is shown that the effective cross section in the element should be computed as polynomial projec-
tion. If simple volume weighting of the cross sections is selected, the problem eigenvalue plotted vs. the element’s
control rod fraction exhibits cusps giving the phenomenon its name. Within Rattlesnake’s FEM framework, the
terms in the weak form that contain a cross section are of the form:

(bl(~x), Σ(~x) f (~x)) =
K

∑
k=1

fk

∫
s

bl(~x)Σ(~x)bk(~x)dx, l = 1, · · · , K (375)

where bl is the l-th FEM shape function, and f is a quantity (scalar flux, angular flux, or angular flux moment)
that is expanded into the set of shape functions by its expansion coefficients fk, and s is the volume of an element
containing a partially inserted control rod. K is the number of local degrees of freedom. The integral in Eq. (375) can
be obtained exactly on segments of an element with different cross section regions of the control rod, but splitting
element and performing integrals accordingly is computationally inefficient.
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The material composition over each subsets of the element denoted by sj is uniform, but state variables that the
cross section depends on, e.g. temperature and density, can change over the extent of sj, i.e. Σj(T(~x), ...). However,
we average the state variables over each sj:

Tj =
1
sj

∫
sj

T(~x)dx, (376)

and evaluate the cross section at the averaged state variable values:

Σj = Σj(Tj, ...). (377)

Now we can write Eq. (375) as:

K

∑
k=1

fk

∫
s

bl(~x)Σ(~x)bk(~x)dx =
K

∑
k=1

fk

J

∑
j=1

Σj

∫
sj

bl(~x)bk(~x)dx. (378)

In common reactor geometries, the control rods are inserted in a direction that aligns with either of the three axes
x, y, z and hence the control rod position can be described by the position of its tip only. In addition, we assume
that the element containing the partially inserted control rod is extruded in the direction of the control rod axis. For
convenience, we refer to the direction of control rod motion as the x3 coordinate, while the x1 and x2 coordinates
span a plane orthogonal to the control rod motion. Given the aforementioned assumptions it follows that the shape
functions can be written as products of two functions: a function g(x1, x2) varying only in the plane perpendicular
to the control rod motion and another function h(x3) varying only along x3:

bl(~x) = gl(x1, x2)hl(x3) (379)

Using Eq. (378), Eq. (378) becomes:

K

∑
k=1

fk

J

∑
j=1

Σj

∫
sj

bl(~x)bk(~x)dx =
K

∑
k=1

fk

[∫
a

gl gkdx1dx2

] [ J

∑
j=1

Σj

∫ x3,j

x3,j−1

hlhkdx3

]
, (380)

where a is the extend of element s in the x1-x2 direction. Formally, we can define a weighted cross section Σl,k

Σl,k =

J
∑

j=1
Σj
∫ x3,j

x3,j−1
hlhkdx3∫ x3,min

x3,min
hlhkdx3

. (381)

This allows us to rewrite Eq. (375) as:
K

∑
k=1

fk

∫
s

bl(~x)Σl,kbk(~x)dx, (382)

which treats the phenomenon of cusping without any approximations. However, l, k dependence of cross sections
comes with the price of more complicated materials and kernels in Rattlesnake and lower efficiency on evaluating
the residual of the kernels in Rattlesnake. Therefore, a different approach must be selected. Rattlesnake expli-
cilty supports cross sections varying within an element. Let us define a cross sections that depends on x3, Σ̄(x3).
Substituting this cross section in Eq. (375) and repeating the steps performed previously leads to:

K

∑
k=1

fk

[∫
a

gl gkdx1dx2

] [∫ x3,max

x3,min

Σ̄(x3)hlhkdx3

]
, l, k = 1, · · · , K. (383)

Requiring Eq. (380) and Eq. (383) to be equal leads to the following condition on Σ̄(x3):∫ x3,max

x3,min

Σ̄(x3)hlhkdx3 =
J

∑
j=1

Σj

∫ x3,j

x3,j−1

hlhkdx3. (384)

The cross section Σ̄(x3) is now expanded into a series of Legendre polynomials Pi:

Σ̄(x3) =
I

∑
i=0

Σ̄iPi(x3), (385)
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leading to
I

∑
i=0

[∫ x3,max

x3,min

Pihlhkdx3

]
Σ̄i =

J

∑
j=1

Σj

∫ x3,j

x3,j−1

hlhkdx3. (386)

The expansion order of Σ̄i must be chosen to satisfy Eq. (384) for all unique combinations of hl · hk. The required
order is given by I = 2p if p is the FEM shape function order. As hl and hk are polynomials, the product Hm = hlhk
is also a polynomial. Hence, Eq. (386) is simply the polynomial projection of Σj onto the set Hm. The polynomial
Hm can be expressed by a linear combination of Legendre polynomials up to order I:

Hm =
I

∑
q=0

ηm,qPq. (387)

Introducing Eq. (387) into Eq. (386) gives:

I

∑
i=0

I

∑
q=0

ηm,q

[∫ x3,max

x3,min

PiPqdx3

]
Σ̄i =

I

∑
q=0

ηm,q

J

∑
j=1

Σj

∫ x3,j

x3,j−1

Pqdx3. (388)

Performing the integral on the left hand side, bringing the expression on the left-hand side to the right hand side and
enforcing the condition that the sum is zero if each term of the sum is zero leads to the following set of equations:

Σ̄i =
2i + 1

x3,max − x3,min

J

∑
j=1

Σj

∫ x3,j

x3,j−1

Pidx3, i = 1, .., I. (389)

This implies that the expansion coefficients can be obtained explicitly by projecting Σj onto the set of Legendre
Polynomials.

In diffusion calculations, the diffusion coefficient multiplies the stiffness matrix and its cusping treatment differs
from the method described above. The derivation of cusping treatment for the diffusion coefficient starts from the
weak form:

(∇φ∗, D(~x)∇ f (~x)) =
d

∑
p=1

K

∑
k=1

fk

∫
s

b(p)
l (~x)D(~x)b(p)

k (~x)dx, (390)

where d is the dimensionality of the problem and b(p)
l is the derivative of bl with respect to xp, ∂bl/∂xp. Using steps

totally equivalent to the treatment of the cross section terms, we arrive at expressions similar to Eq. (384) for the

x1-x2 direction and x3 direction that are not identical. Hence, we define a diagonal tensor diffusion coefficient ~~D(x3)
that allows us to separately satisfy the resulting constraints. We denote the elements on the diagonal as Dp noting
that D1 = D2 6= D3. Then we expand each component into a series of Legendre polynomials:

Dp(x3) =
I

∑
i=0

Dp,iPi(x3). (391)

For the components of the diffusion coefficient in the x1 and x2 direction, this is identical to the Eq. (386):

I

∑
i=0

[∫ x3,max

x3,min

Pihlhkdx3

]
Dp,i =

J

∑
j=1

Dj

∫ x3,j

x3,j−1

hlhkdx3. (392)

For the x3 direction, we have:

I3

∑
i=0

[∫ x3,max

x3,min

Pi
∂hl
∂x3

∂hk
∂x3

dx3

]
Dp,i =

J

∑
j=1

Dj

∫ x3,j

x3,j−1

∂hl
∂x3

∂hk
∂x3

dx3. (393)

For the x3 calculation it should be noted that ∂hl
∂x3

∂hk
∂x3

is a polynomial of at most order 2(p− 1), p > 1. Hence it can
be treated exactly like the previously described case except that the I is now given by I = 2(p− 1). Note that this
cusping treatment requires the use of a diagonal tensor diffusion coefficient with D1 = D2 6= D3.
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4.4 Transport functions

Transport functions are designed to simplify the specifications of energy, spatially, time and angularly dependent
functions that are frequently encountered in transport problems. A number of advantages result from that design,
among which are:

• Simplification of the input file, in particular to specify incoming source boundary conditions or volumetric
source by taking full advantage of the action system and automatically add functions needed to describe
the problem but not defined in detail by the user. More specifically, if the boundary or volumetric source is
constant in each group and block, numbers can be directly specified in the input file instead of individually
creating all the necessary functions.

• Automatic normalization independently of the (spatial) dimensionality of the problem. Indeed, if the problem
is only dependent upon one or two spatial dimensions, it is desired to keep the moments unchanged com-
pared to a 3-D calculation with the appropriate symmetries. This requires to integrate the source terms and
practically multiply the boundary and volumetric source by 2 for a 2-D problem and by 2π for a 1-D problem.

• The angular moments of SN functions (i.e. described along specific directions) or – in return – the value at
specific directions of PN functions (i.e. described by their angular moments) can be automatically computed.
More specifically, if the values fn of a function are given along Nd particular directions, the moments may be
reconstructed using the angular weights wn and the values of the spherical harmonics along those particular
directions6:

f`,m =
Nd

∑
n=1

fnwnY`,m(~Ωn) (394)

Likewise, a function described by its moments f`,m can be evaluated at any direction ~Ω using its spherical
harmonics expansion:

f (~Ω) = ∑
0≤|m|≤`≤N

f`,mR`,m(~Ω) (395)

(see Appendix B for more details on the spherical harmonics definitions and Appendix E on the direction-to-
moment and moment-to-direction matrices)

• Creating a transport function using the solution of a previous calculation and compute the error norm of PN
functions. In particular, for transient calculations, the initial condition is reconstructed from the exodus file
using Eq. (394) or Eq. (395) using a transport function.

• Possibility of evaluating functions in the vicinity of interfaces, rather than on the actual interface. In particular,
if the function comes from a previous calculation and is discontinuous on the surface, it can be desired to use
the value immediately on the outside of the interface, which can be done by evaluating the function at:

~x+ = ~x + ε(~x−~xe) (396)

rather than at ~x (on the interface), where ε is a small positive number and ~xe is the position of the centroid of
the current element.

4.5 Method of manufactured solution

The Method of Manufactured Solutions (MMS) is a powerful tool for computer code verification (CCV). Typically,
the system of PDEs solved by a computer code is not amenable to analytical solutions and therefore the only way
to obtain an analytical solution is using the MMS. Assume that the system of PDEs is given by

Lu = f, (397)

where L is an integro-differential operator, u is the function we are trying to solve for and f is a forcing term. The
MMS reverses the solution process by selecting a function uMMS and computing the forcing term such that uMMS

solves the resulting "manufactured" PDEs:
fh,MMS = LhuMMS, (398)

6This way is not unique as detailed in Appendix E.
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uMMS fh,MMS=Lh uMMS uh=(Lh)-1 fh,MMS uh

Within RattleSNake

Error

Figure 10 Schematic design of the implementation of the MMS in Rattlesnake.

where the h denotes that the respective quantitiy is evaluated on a grid with mesh size h (in fact h refers to both the
spatial and angular refinement level).

The MMS can then be used to facilitate computer code verification via the order of convergence test. The code is
used to solve the problem:

Lhuh = fh,MMS, (399)

Using a sequence of successively refined meshes, a set of solutions uhj is obtained whose error ej with respect to the
true solution uMMS is measured in some norm ‖ · ‖p:

ej = ‖uhj − uMMS‖p, (400)

From the sequence of errors ej the observed order of accuracy rj can be computed as:

rj =
ln

ej
ej−1

ln
hj

hj−1

. (401)

For a successful verification the observed order is required to approach the theoretical order of accuracy (inherent
to the discretization method), i.e.

rj → rF for j→ ∞. (402)

The MMS benchmark capability is currently implemented for the SN angular discretization and harnesses the flexi-
ble MOOSE framework to allow adding additional manufactured solutions easily. The user only defines a manufac-
tured solution by deriving a new class from the appropriate SNSolutionFunction class and overriding the required
member functions. SNSolutionFunction is a derived class of TransportFunction. The conceptual design of the MMS
in Rattlesnake is depicted in Fig. 10.
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5 Solvers

The multigroup transport partial differential equations have been presented in Section 2 and various discretization
schemes with continuous or discontinuous FEM in space and SN , PN or diffusion in angle have been detailed
in Section 3. This section focuses on how the discretized algebraical system is solved numerically. To facilitate the
presentation, three types of problems, steady-state source, steady-state eigenvalue and transient, are respectively
abstracted into a simpler notation:

F (x) = 0, (403)

∂T (t, x)
∂t

= R(t, x), x(t = t0) = x0 (404)

A(x) = 1
λ
B(x), (405)

where x is the finite dimensional solution vector (its size being noted N in this section) which contains the coeffi-
cients corresponding to the shape functions of the angular fluxes for SN , of the angular flux moments for PN and of
the scalar fluxes for diffusion. F is the generic time independent nonlinear operator on x, which could depend on
the material properties and/or the solution vector itself directly or indirectly. F (x) can be represented by a matrix-
vector production if F is a linear operator. R is used to denote the generic time dependent operator on x with an
explicit time variable t in its argument list. T is for the generic time derivative term. We use λ for the eigenvalues
and A and B for the two operators on the left and right hand sides, respectively.

By default, Rattlesnake uses the PJFNK (Preconditioned Jacobian-Free Newton Krylov) method to solve the stead-
state source problem. The method is detailed in Section 5.1. Rattlesnake provides the Jacobian-free residual evalu-
ation and the preconditioning matrix, sometimes referred to as Jacobian, to PETSc for the underlining solve. If the
preconditioning matrix is the exact Jacobian, Jacobian-free residual evaluation is not needed during linear solves
and the method is then the preconditioned Newton method. It is noted that this is rarely practical for transport
problem due to the extremely large dimension N and the variable coupling through scattering and fission events.
It can however be very useful for debugging purposes. Transport discretization schemes with continuous FEM and
discontinuous FEM are fundamentally different in terms of the matrix structure. The former results into a diffusion-
like matrix for the streaming plus collision operator, which is suitable for multigrid (MG) method. MG method can
be completely mesh free if the preconditioning matrix is assembled and stored. Various other PETSc precondition-
ing techniques can be utilized out of the box. The latter may result7 into an almost low-block-triangular matrix for
the streaming plus collision operator, in which case it can be inverted efficiently with a custom matrix-free sweep-
ing algorithm. It is also noted that PETSc itself is not aware of mesh adaptation, multiphysics coupling, etc., so
MOOSE provides extra outer iterations wrapping the Newton iteration for mesh refinement cycles, multiphysics
couplings, etc. For example, NDA calculations are performed with the steady-state source or eigenvalue solvers
with a wrapping Picard iteration.

The method of lines is exclusively used for solving transient problems due to its simplicity. MOOSE provides the
time stepping and time integration for transient calculations. Time stepping and integration schemes and their
documentations can be found in MOOSE. We briefly discuss them in Section 5.2. At each time step, the PJFNK or
Newton method can be used along with outer iterations as in the steady-state source problem.

Rattlesnake interacts with SLEPc [90] for eigenvalue calculations. The most common approach is based on PJFNK,
where the original eigenvalue problem is cast into a nonlinear problem with the eigenvalue evaluated from the
solution. This approach requires a good initial guess to guarantee convergence to the fundamental mode, which
is typically our interest. This good initial guess can be obtained using a few inverse power iterations. For certain
problems whose dominant ratio is not close to one, inverse power iterations converge fast and can be a good option.
Both methods are detailed in Section 5.3.

Source iteration is a very popular concept in radiation transport. It uses the solution of the current iteration to
construct the source and then inverts the streaming plus collision operator to update the solution. If the external
source is excluded from the source, the solution at a given iteration is the partial solution corresponding to the
particles having undergone a number of collisions equal to the iteration index. If the problem is not very diffusive,
source iteration thus converges fast. The convergence is guaranteed if there is no multiplication in the system.

7Unfortunately, this is not true for PN methods.
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Source iteration can be viewed as a Richardson iteration. This solver is discussed in Section 5.4. In Rattlesnake, it is
mainly used as transport updates for nonlinear diffusion accelerations.

5.1 PJFNK

Newton iterations start with an initial guess of the solution x(0). At each Newton iteration we solve the following
linear problem:

J(x(n−1))δx(n) = F (x(n−1)), (406)

where

J(x(n−1)) ≡ Fx(x)|x=x(n−1) (407)

is the Jacobian matrix evaluated at x(n−1). It depends on x(n−1) for general nonlinear problems but is constant for
linear problems. The right hand side of Eq. (406) is called the residual at x(n−1). The Krylov methods are employed
for solving the above linear equation, which requires only the evaluation of the matrix-vector product J(x(n−1))y.
The Jacobian-free method is used to approximate matrix vector products by a finite-difference like approximation:

J(x(n−1))y ≈ F (x
n−1 + εy)−F (xn−1)

ε
, (408)

where the scalar value ε is chosen by PETSc automatically to approximate J(x(n−1))y accurately for the linear solve.
It is noted that for a linear problem for which F (x) can be expressed as Ax− b, where the matrix A is the Jacobian
(independent of x) and b is the right-hand-side vector, the right hand side of Eq. (408) is independent of ε. Section
5.5 of the PETSc user’s manual on matrix-free methods details the algorithms for choosing the value of ε.

Krylov methods typically also require an approximation of the actual Jacobian P(xn−1) ≈ J(x(n−1)) for precondi-
tioning the Krylov solution at each linear iteration to improve the convergence. It is noted that the preconditioning
matrix is seldom the exact Jacobian J because it could require too much computational time and memory and, in
some cases, is simply impossible to compute. By default the type of Krylov methods in use is the Generalized
Minimum Residual (GMRES) method because it does not have assumptions on the properties of the underlying
Jacobian. If the Jacobian is symmetric positive definite (SPD), the conjugate gradient (CG) method should be used.
The initial guess for each linear solve is always set to zero, which implies that the initial linear residual is the same
as the nonlinear residual. The residual norm at each linear iteration is evaluated by PETSc, for instance, while up-
dating the Hessenberg matrix if the GMRES method is used. At the conclusion of the linear solve, the solution is
updated as follows

xn = xn−1 + αδx(n) (409)

where α is determined by the line-search algorithm. At each nonlinear or Newton iteration, we need to update
the preconditioning matrix and evaluate the residual with the updated solution. At each linear iteration, we simply
need a residual evaluation and the operation of the preconditioner built from the preconditioning matrix. It is noted
that the default preconditioner type8 depends on the number of processors and also depends on the assembled
preconditioning matrix P. Typically incomplete LU (PCILU) is the default type with one processor and block Jacobi
(PCBJACOBI) is the default with multiple processors. Consequently, the same convergence may differ depending
on the number of processors. Various preconditioning techniques are available through PETSc, which can be found
in the PETSc user manual.

The convergence can be determined by either one of the following:

‖F (xn)‖ <εabs, (410)

‖F (xn)‖ <εrel

∥∥∥F (x0)
∥∥∥ , (411)∥∥∥δx(n)

∥∥∥ <εstep. (412)

where ε denotes a given tolerance.
8In PETSc the preconditioner type refers to the method to obtain an approximation of the inverse of P.
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5.2 Transient

This executioner uses the method of lines to treat the time independent variable. Using the implicit Euler scheme
as an example, we are solving, at every time step,

T (t, x)− T (told, xold)

∆t
= R(t, x), (413)

where ∆t = t− told, t and told being the current and previous time step, respectively. If we define F (x) as

F (x) ≡ R(t, x) +
1

∆t
T (t, x)− 1

∆t
T (told, xold), (414)

where t, told and xold are given, then, at every time step, we are solving a finite-dimensional steady-state nonlinear or
linear problem as given in Eq. (413). A PJFNK solver is used for this steady-state solve. Time stepping is controlled
by MOOSE time steppers. It can be as simple as a constant time step size or complicated as using time adaptation.
How the steady-state problem is formed at every time step is controlled by MOOSE time integrators. The available
integrators are implicit Euler, explicit Euler, Crank-Nicolson, BDF2, Runge-Kutta second order, diagonal implicit
Rogue-Kutta, explicit TVD Runge-Kutta second order, etc.

5.3 Eigenvalue

The operator form of the steady-state eigenvalue problem of the neutron transport equation is given by Eq. (405).
The solution x has the following properties: (1) the trivial solution x = 0 is usually discarded, and (2) if x is a
solution, for any real number a, ax is also a solution. Typically we are only interested in the absolute minimum
eigenvalue and the corresponding eigenvector of the system, referred to as the fundamental mode in the remainder
of this document. The inverse power iteration algorithm is given in Algorithm 5. We notice immediately that
|B(x)|

λ remains constant during the iteration, so if |B(x
(0))|

λ(0) is set to one, the algorithm can be simplified significantly
into Algorithm 6. The choice of norm |B(x)| is arbitrary and does not affect the convergence of the inverse power
method.

Also, in this simplified algorithm, the solution is automatically normalized enforcing |B(x)| = k. Post-processing is
used to normalize the solution so that |x| = c, where |.| can be any norm and c is a scalar constant. If the dominance
ratio, defined as the ratio between the smallest and the second smallest eigenvalue, is close to one, inverse power
iterations converge very slowly. We can apply accelerations, such as Chebyshev acceleration [91], based on the
on-the-fly estimation of the dominance ratio. PJFNK can still be applied at each iteration to update the solution.

From the simplified inverse power method, if we let

λ = |B(x)|, (417)

the eigenvalue problem can be viewed as the following nonlinear problem

A(x) =
1

|B(x)|B(x). (418)

This new viewpoint opens the door of using PJFNK method to solve the eigenvalue problem. However, as the
eigenvalue problems has an infinite number of solutions different from the fundamental mode, we have to ensure
that the nonlinear solution does not converge to any of the higher harmonics but to the fundamental mode. To
this end we need to ensure that the initial guess supplied to the PJFNK solver is sufficiently close to the funda-
mental mode. This can be achieved by performing several free inverse power iterations before starting the Newton
iteration. It is noted that λ does need to be part of the solution vector. This PJFNK eigensolver was proposed in
Ref. [69].

Occasionally, it is desired to determine a parameter p, such as the soluble boron concentration, control rod bank
position, etc., (which is affecting the operators A(x) and/or B(x)), to force the eigenvalue λ in Eq. (405) to assume
a specific value, usually λ = 1. In such a case, the system is referred to as critical and one is algorithm the targeted
eigenvalue. For this reason this kind of calculation is often called criticality search. We can think of the eigenvalue
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Algorithm 5 Inverse power iteration

1: Initialization:

λ(0) = λ0

x(0) = x0.

2: Update x by performing a steady-state solve ‡ and update λ:

A(x(n)) = 1
λ(n−1)

B(x(n−1)) (415)

λ(n) = λ(n−1) |B(x(n))|
|B(x(n−1))|

3: Check the convergence

|λ(n) − λ(n−1)|
|λ(n)|

< ελ

and

|x(n) − x(n−1)|
|x(n)|

< εx. (416)

When either of them is not true, return Step 2, otherwise exit.
‡ Note that we typically do not need to have a full solve. The currently code will only perform one Newton iteration.

Algorithm 6 Modified inverse power iteration

1: Initialization:

λ(0) = λ0

x(0) = λ0
x0

|B(x0)|
.

2: Update x by performing a steady-state solve and update k:

A(x(n)) = 1
λ(n−1)

B(x(n−1))

λ(n) = |B(x(n))|

3: Check the convergence

|λ(n) − λ(n−1)|
|λ(n)|

< ελ

and

|x(n) − x(n−1)|
|x(n)|

< εx.

When either of them is not true, return Step 2, otherwise exit.
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λ(p) as a function of p. If the parameter p is close to the target parameter, a Newton search is performed for
λ(p)− λtarget = 0 with

p(n+1) = p(n) −
(

dλ

dp

∣∣∣∣
p=p(n)

)−1

(λ(p(n))− λtarget), (419)

where dλ
dp

∣∣∣
p=p(n)

is approximated by

dλ

dp

∣∣∣∣
p=p(n)

=
λ(p(n)(1 + ε))− λ(p(n))

εp(n)
, (420)

where ε is a small scalar value used to perturb the parameter for evaluating the λ-derivative with respect to p.
For every Newton step n, we thus perform two eigenvalue calculations: one with the current parameter p(n) and
another with the perturbed parameter p(n)(1 + ε) with PJFNK. It is noted that the perturbation with ε should be
large enough so that no numerical issue arise while evaluating k(p(n)(1+ ε))− k(p(n)) and the search is stable. The
smaller dk

dp is, the larger ε should be. On the other hand, if a large ε is used, we end up with the secant method,
which converges more slowly than Newton’s method. Newton’s method requires a fairly close initial guess of p
if the dependence of k on p is complicated. In such a case, we can perform few bisection evaluations to obtain an
initial guess.

5.4 Richardson iteration

In some cases, it is advantageous to split the general nonlinear problem Eq. (403) as

L(x) = R(x). (421)

and to perform the following iteration scheme

L(x(n)) = R(x(n−1)). (422)

The scattering source iteration, well-known in radiation transport, is a special case of Richardson iteration. Al-
though the above equation can be solved with PJFNK, this form can lead to a faster converging scheme.. For
example, when L only has the streaming plus collision operator in SN transport, the problem can be solved with
AMG for CFEM and with sweeper for DFEM directly. The Diffusion Synthetic Acceleration (DSA) is a well-known
technique to improve convergence of the source iteration scheme for diffusive problems and can be recast as an
efficient preconditioner for SN schemes [92, 93].
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A Vector Notations

We use vectors throughout this manual to simplify notation for the multigroup transport or diffusion equations.
These vectors are different from the vector in the three-dimensional space or in the two-dimensional angular do-
main, where ~v is used. We use v to denote a quantity with multiple components, such as the angular fluxes for all
groups Ψ. These vectors could be combined with the traditional vector notations, for example,~J as the current of

all groups and the traditional tensor notations, such as ~~D for the diffusion coefficient tensor of all energy groups or
~~E for the Eddington tensor of all groups. We also adopt an implicit multiplication operator of any two vectors of
the same size as v1v2, which represents a resultant vector whose components are simply the multiplication of the
corresponding components of the two vectors.

We give a special notation for PDE operators, for example L for the streaming plus collision operator. Operation
of a PDE operator on a vector results into a vector of the operator on each elements. We also bold font to denote
matrices (e.g. M), especially for PN methods. Matrix-vector product is interpreted in the usual way. Each element

of a matrix can be a traditional vector or tensor, as ~D and ~~H in Section B.2. Although generally a PDE operator can
be written in a matrix form, we use a separate notation for them for clarity. To differentiate the PDE operator and
the operator form of the weak form, we use b to represent the bilinear or linear forms appearing in the weak forms.
Bilinear or linear operators return a scalar value which is defined as the summation of bilinear or linear operation
of all components.

We summarize all vectors and PDE operator notation appearing in this manual in Table 46.

Table 46 Vector and operator notations.

Name Definition Page number

Angular flux Ψ ≡


Ψ1
Ψ2
...

ΨG

 12

Adjoint angular flux Ψ∗ =


Ψ∗1
Ψ∗2
...

Ψ∗G

 14

Angular flux divided by speed Ψ
v ≡


Ψ1
v1
Ψ2
v2
...

ΨG
vG

 12

Boundary surface source Ψinc ≡


Ψinc

1
Ψinc

2
...

Ψinc
G

 13

Boundary adjoint surface source Ψ∗out
b =


Ψ∗out

1
Ψ∗out

2
...

Ψ∗out
G

 14

Initial angular flux Ψ0 ≡


Ψ0

1
Ψ0

2
...

Ψ0
G

 13
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Final adjoint angular flux Ψ∗1 =


Ψ∗11
Ψ∗12

...
Ψ∗1G

 14

External angular source Qext ≡


Qext

1
Qext

2
...

Qext
G

 12

Zero-th moment of external source Qext
0 ≡


∫
S Qext

1 dΩ∫
S Qext

2 dΩ
...∫

S Qext
G dΩ

 15

Adjoint external angular source Q∗ext =


Q∗ext

1
Q∗ext

2
...

Q∗ext
G

 14

Scalar flux Φ ≡


Φ1
Φ2
...

ΦG

 15

Adjoint scalar flux Φ∗ ≡


Φ∗1
Φ∗2

...
Φ∗G

 19

Scalar flux divided by speed Φ
v ≡


Φ1
v1
Φ2
v2
...

ΦG
vG

 15

Current ~J ≡


~J1
~J2
...
~JG

 15

Boundary partial incoming current Ji ≡



∫
|~Ω·~nb|<0

∣∣∣~Ω ·~nb

∣∣∣Ψ1 dΩ∫
|~Ω·~nb|<0

∣∣∣~Ω ·~nb

∣∣∣Ψ2 dΩ
...∫

|~Ω·~nb|<0

∣∣∣~Ω ·~nb

∣∣∣ΨG dΩ

 16

Boundary partial out-going current Jo ≡



∫
|~Ω·~nb|>0

∣∣∣~Ω ·~nb

∣∣∣Ψ1 dΩ∫
|~Ω·~nb|>0

∣∣∣~Ω ·~nb

∣∣∣Ψ2 dΩ
...∫

|~Ω·~nb|>0

∣∣∣~Ω ·~nb

∣∣∣ΨG dΩ

 16
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Boundary incoming source Jinc ≡



∫
|~Ω·~nb|<0

∣∣∣~Ω ·~nb

∣∣∣Ψinc
1 dΩ∫

|~Ω·~nb|<0

∣∣∣~Ω ·~nb

∣∣∣Ψinc
2 dΩ

...∫
|~Ω·~nb|<0

∣∣∣~Ω ·~nb

∣∣∣Ψinc
G dΩ

 16

Boundary reflectivity α ≡


αs

1 + αd
1

αs
2 + αd

2
...

αs
G + αd

G

 16

Extrapolation factor e ≡


1
e1
1
e2
...
1

eG

 19

Eddington tensor ~~E ≡


~~E1
~~E2
...
~~EG

 16

Delayed neutron precursor C ≡


C1
C2
...

CI

 24

DNP decay constant λ ≡


λ1
λ2
...

λI

 24

SAAF stabilization τ ≡


τ1
τ2
...

τG

 38

LS weighting W ≡


W1(~x, t)
W2(~x, t)

...
WG(~x, t)

 41

Scattering SΨ ≡


∑G

g′=1
∫
S Σs,g′→1 fg′→1Ψg′(~Ω′) dΩ′

∑G
g′=1

∫
S Σs,g′→2 fg′→2Ψg′(~Ω′) dΩ′

...
∑G

g′=1
∫
S Σs,g′→G fg′→GΨg′(~Ω′) dΩ′

 13

Minus scattering S̄Ψ ≡


∑G

g′=1
∫
S Σs,g′→1 fg′→1(−~Ω · ~Ω)Ψg′(~Ω′) dΩ′

∑G
g′=1

∫
S Σs,g′→2 fg′→2(−~Ω · ~Ω)Ψg′(~Ω′) dΩ′

...
∑G

g′=1
∫
S Σs,g′→G fg′→G(−~Ω · ~Ω)Ψg′(~Ω′) dΩ′

 40
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Adjoint scattering operator S∗Ψ ≡


∑G

g′=1
∫
S Σs,1→g′ f1→g′Ψg′(~Ω′) dΩ′

∑G
g′=1

∫
S Σs,2→g′ f2→g′Ψg′(~Ω′) dΩ′

...
∑G

g′=1
∫
S Σs,G→g′ fG→g′Ψg′(~Ω′) dΩ′

 15

Isotropic scattering S0Φ ≡


∑G

g′=1 Σs,g′→1Φg′

∑G
g′=1 Σs,g′→2Φg′

...
∑G

g′=1 Σs,g′→GΦg′

 15

Linearly anisotropic scattering S1~J ≡


∑G

g′=1 Σs,g′→1,1~Jg′

∑G
g′=1 Σs,g′→2,1~Jg′

...
∑G

g′=1 Σs,g′→G,1~Jg′

 16

Out-scattering SdΦ ≡


∑g′ 6=1 Σs,g′→1Φg′

∑g′ 6=2 Σs,g′→2Φg′
...

∑g′ 6=G Σs,g′→GΦg′

 16

Adjoint out-scattering S∗dΦ∗ ≡


∑g′ 6=1 Σs,1→g′Φ∗g′
∑g′ 6=2 Σs,2→g′Φ∗g′

...
∑g′ 6=G Σs,G→g′Φ∗g′

 19

Boundary reflecting BΨ ≡



αs
1Ψ1(~Ωr) + αd

1

∫
~Ω′ ·~nb>0|~Ω′ ·~nb|Ψ1(~Ω′) dΩ′∫

~Ω′ ·~nb>0|~Ω′ ·~nb| dΩ′

αs
2Ψ2(~Ωr) + αd

2

∫
~Ω′ ·~nb>0|~Ω′ ·~nb|Ψ2(~Ω′) dΩ′∫

~Ω′ ·~nb>0|~Ω′ ·~nb| dΩ′

...

αs
GΨG(~Ωr) + αd

G

∫
~Ω′ ·~nb>0|~Ω′ ·~nb|ΨG(~Ω′) dΩ′∫

~Ω′ ·~nb>0|~Ω′ ·~nb| dΩ′


13

Adjoint boundary reflecting B∗Ψ ≡



αs
1Ψ1(~Ωr) + αd

1

∫
~Ω′ ·~nb<0|~Ω′ ·~nb|Ψ1(~Ω′) dΩ′∫

~Ω′ ·~nb<0|~Ω′ ·~nb| dΩ′

αs
2Ψ2(~Ωr) + αd

2

∫
~Ω′ ·~nb<0|~Ω′ ·~nb|Ψ2(~Ω′) dΩ′∫

~Ω′ ·~nb<0|~Ω′ ·~nb| dΩ′

...

αs
GΨG(~Ωr) + αd

G

∫
~Ω′ ·~nb<0|~Ω′ ·~nb|ΨG(~Ω′) dΩ′∫

~Ω′ ·~nb<0|~Ω′ ·~nb| dΩ′


15

Streaming+collision operator LΨ ≡



(
~∇ · ~Ω + Σt,1

)
Ψ1(

~∇ · ~Ω + Σt,2

)
Ψ2

...(
~∇ · ~Ω + Σt,G

)
ΨG

 13

Adjoint streaming+collision operator L∗Ψ ≡



(
−~Ω · ~∇+ Σt,1

)
Ψ1(

−~Ω · ~∇+ Σt,2

)
Ψ2

...(
−~Ω · ~∇+ Σt,G

)
ΨG

 14

127



A Vector Notations Rattlesnake Theory Manual

Streaming L1Ψ ≡


~Ω · ~∇Ψ1
~Ω · ~∇Ψ2

...
~Ω · ~∇ΨG

 38

Curvilinear streaming EΨ ≡


EΨ1
EΨ2

...
EΨG

 33

Second curvilinear streaming E2Ψ ≡


E2Ψ1
E2Ψ2

...
E2ΨG

 33

Collision L2Φ ≡


Σt,1Φ1
Σt,2Φ2

...
Σt,GΦG

 15

Inverse collision L−1
2 Ψ ≡


Ψ1
Σt,1
Ψ2
Σt,2
...

ΨG
Σt,G

 38

Removal L3Φ ≡


Σr,1Φ1
Σr,2Φ2

...
Σr,GΦG

 16

Transport Ltr~J ≡


Σtr,1~J1
Σtr,2~J2

...
Σtr,G~JG

 17

Diffusion D~J ≡


D1~J1
D2~J2

...
DG~JG

 19

Prompt fission Fp,0Φ ≡


(1− β) χp,1 ∑G

g′=1 νΣf,g′Φg′

(1− β) χp,2 ∑G
g′=1 νΣf,g′Φg′

...
(1− β) χp,G ∑G

g′=1 νΣf,g′Φg′

 24

Adjoint prompt fission F∗p,0Φ∗ ≡


(1− β) νΣf,1 ∑G

g′=1 χp,g′Φ∗g′
(1− β) νΣf,2 ∑G

g′=1 χp,g′Φ∗g′
...

(1− β) νΣf,G ∑G
g′=1 χp,g′Φ∗g′

 26

Angular prompt fission FpΨ ≡ 1
4πFp,0Φ = 1

4π


(1− β) χp,1 ∑G

g′=1 νΣf,g′Φg′

(1− β) χp,2 ∑G
g′=1 νΣf,g′Φg′

...
(1− β) χp,G ∑G

g′=1 νΣf,g′Φg′

 24

128



A Vector Notations Rattlesnake Theory Manual

Adjoint angular prompt fission F∗pΨ∗ ≡ 1
4πF

∗
p,0Φ∗ =


1

4π (1− β) νΣf,1 ∑G
g′=1 χp,g′Φ∗g′

1
4π (1− β) νΣf,2 ∑G

g′=1 χp,g′Φ∗g′
...

1
4π (1− β) νΣf,G ∑G

g′=1 χp,g′Φ∗g′

 26

Delayed fission Fd,0Φ ≡


∑I

i=1 βiχd,i,1 ∑G
g′=1 νΣf,g′Φg′

∑I
i=1 βiχd,i,2 ∑G

g′=1 νΣf,g′Φg′

...
∑I

i=1 βiχd,i,G ∑G
g′=1 νΣf,g′Φg′

 24

Adjoint delayed fission F∗d,0Φ∗ ≡


νΣf,1 ∑G

g′=1 ∑I
i=1 βiχd,i,g′Φ∗g′

νΣf,2 ∑G
g′=1 ∑I

i=1 βiχd,i,g′Φ∗g′
...

νΣf,G ∑G
g′=1 ∑I

i=1 βiχd,i,g′Φ∗g′

 26

Angular delayed fission FdΨ ≡ 1
4πFd,0Φ =


1

4π ∑I
i=1 βiχd,i,1 ∑G

g′=1 νΣf,g′Φg′
1

4π ∑I
i=1 βiχd,i,2 ∑G

g′=1 νΣf,g′Φg′

...
1

4π ∑I
i=1 βiχd,i,G ∑G

g′=1 νΣf,g′Φg′

 24

Adjoint angular delayed fission F∗dΨ∗ ≡ 1
4πF

∗
d,0Φ∗ =


1

4π νΣf,1 ∑G
g′=1 ∑I

i=1 βiχd,i,g′Φ∗g′
1

4π νΣf,2 ∑G
g′=1 ∑I

i=1 βiχd,i,g′Φ∗g′
...

1
4π νΣf,G ∑G

g′=1 ∑I
i=1 βiχd,i,g′Φ∗g′

 26

Partial delayed fission Fd,i,0Φ ≡


βiχd,i,1 ∑G

g′=1 νΣf,g′Φg′

βiχd,i,2 ∑G
g′=1 νΣf,g′Φg′

...
βiχd,i,G ∑G

g′=1 νΣf,g′Φg′

 25

Partial angular delayed fission Fd,iΦ ≡ 1
4π


βiχd,i,1 ∑G

g′=1 νΣf,g′Φg′

βiχd,i,2 ∑G
g′=1 νΣf,g′Φg′

...
βiχd,i,G ∑G

g′=1 νΣf,g′Φg′

 25

Fission F0Φ =


χ1 ∑G

g′=1 νΣf,g′Φg′

χ2 ∑G
g′=1 νΣf,g′Φg′

...
χG ∑G

g′=1 νΣf,g′Φg′

 24

Adjoint fission F∗0Φ∗ ≡


νΣf,1 ∑G

g′=1 χp,g′Φ∗g′
νΣf,2 ∑G

g′=1 χp,g′Φ∗g′
...

νΣf,G ∑G
g′=1 χp,g′Φ∗g′

 26

Angular fission FΨ ≡ 1
4πF0Φ =


1

4π χ1 ∑G
g′=1 νΣf,g′Φg′

1
4π χ2 ∑G

g′=1 νΣf,g′Φg′

...
1

4π χG ∑G
g′=1 νΣf,g′Φg′

 24
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Adjoint angular fission F∗Ψ∗ ≡ 1
4πF

∗
0Φ∗ =


1

4π νΣf,1 ∑G
g′=1 χp,g′Φ∗g′

1
4π νΣf,2 ∑G

g′=1 χp,g′Φ∗g′
...

1
4π νΣf,G ∑G

g′=1 χp,g′Φ∗g′

 26

Delayed source C0C =


∑I

i=1 χd,i,1λiCi
∑I

i=1 χd,i,2λiCi
...

∑I
i=1 χd,i,GλiCi

 24

Adjoint delayed source P∗0C∗ ≡


νΣf,1 ∑I

i=1 βiC∗i
νΣf,2 ∑I

i=1 βiC∗i
...

νΣf,G ∑I
i=1 βiC∗i

 26

Angular delayed source CC ≡ 1
4πC0C =


1

4π ∑I
i=1 χd,i,1λiCi

1
4π ∑I

i=1 χd,i,2λiCi
...

1
4π ∑I

i=1 χd,i,GλiCi

 24

Adjoint angular delayed source P∗C∗ ≡ 1
4πP

∗
0C∗ =


1

4π νΣf,1 ∑I
i=1 βiC∗i

1
4π νΣf,2 ∑I

i=1 βiC∗i
...

1
4π νΣf,G ∑I

i=1 βiC∗i

 26

Partial delayed source Ci,0Ci =


χd,i,1λiCi
χd,i,2λiCi

...
χd,i,GλiCi

 25

Partial angular delayed source CiCi =
1

4π


χd,i,1λiCi
χd,i,2λiCi

...
χd,i,GλiCi

 25

DNP production PΦ ≡


β1 ∑G

g′=1 νΣf,g′Φg′

β2 ∑G
g′=1 νΣf,g′Φg′

...
β I ∑G

g′=1 νΣf,g′Φg′

 24

Partial DNP production PiΦ ≡ βi ∑G
g′=1 νΣf,g′Φg′ 25

Adjoint DNP production C∗0Φ∗ ≡


λ1 ∑G

g′=1 χd,1,g′Φ∗g′
λ2 ∑G

g′=1 χd,2,g′Φ∗g′
...

λI ∑G
g′=1 χd,I,g′Φ∗g′

 26

Black body emission SBB ≡


SBB,1
SBB,2

...
SBB,G

 31
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B Spherical Harmonics

B.1 Basics

The flying direction ~Ω can be fully characterized with µ, the cosine of the polar angle, and ω, the azimuthal angle.
For any integers `, m such that |m| ≤ `, the real spherical harmonics of degree ` and order m is defined as:

Y`,m(µ, ω) =


√

2 C|m|` P|m|` (µ) cos(|m|ω), 0 < m ≤ `

C0
` P0

` (µ), m = 0√
2 C|m|` P|m|` (µ) sin(|m|ω), −` ≤ m < 0

, 0 ≤ ` < ∞, (423)

where C|m|` =
√

(`−|m|)!
(`+|m|)! is a normalization constant and Pm

` designates the associated Legendre polynomial of
degree ` and order m and is defined as (for 0 ≤ m ≤ `):

Pm
` (µ) = (−1)m

(
1− µ2

)m/2 dm

dµm P`(µ) =
(−1)m

2``!

(
1− µ2

)m/2 d`+m

dµ`+m

(
(µ2 − 1)`

)
(424)

where P` is the Legendre polynomial of degree `. The (−1)m term in blue is the Condon-Shortley phase and may
or may not be included in the definition of Pm

` . We add | · | around m even when m is positive to avoid ambiguity
which will be clear once we give the classic definition of spherical harmonics:

Ym
` (µ, ω) =

√
2`+ 1

4π

(`−m)!
(`+ m)!

Pm
` (µ)eimω, m = −`, · · · , `; ` = 0, · · · , ∞, (425)

with the associated Legendre polynomial with negative m being related with the one with positive m as

P−m
` (µ) = (−1)m (`−m)!

(`+ m)!
Pm
` (µ), 0 ≤ m ≤ `, (426)

or

Ym
` (µ, ω) =

√
2`+ 1

4π

(`− |m|)!
(`+ |m|)! P|m|` (µ)(−1)

|m|−m
2 eimω, m = −`, · · · , `; ` = 0, · · · , ∞. (427)

It can be observed that

Ȳm
` (µ, ω) = Ym

` (µ,−ω) = (−1)mY−m
` (µ, ω). (428)

It is worth giving the conversion equations between the real spherical harmonics and the classic spherical harmon-
ics:

Y`,m =


1√
2

√
4π

2`+1

(
Ym
` + (−1)mY−m

`

)
, 0 < m ≤ `√

4π
2`+1 Y0

` , m = 0

−i 1√
2

√
4π

2`+1

(
Y−m
` − (−1)mYm

`

)
, −` ≤ m < 0

(429)

and

Ym
` =


1√
2

√
2`+1

4π (Y`,m + iY`,−m) , 0 < m ≤ `√
2`+1

4π Y`,0, m = 0

(−1)m 1√
2

√
2`+1

4π (Y`,−m − iY`,m) , −` ≤ m < 0

(430)

Rattlesnake uses the real spherical harmonics without the Condon-Shortley phase by default.

131



B.1 Basics Rattlesnake Theory Manual

Spherical harmonics are related with the solution to Laplace’s equation in spherical coordinates. The Laplacian in
spherical coordinates on a generic function f (r, µ, ω) is

∆ f =
1
r2

∂

∂r

(
r2 ∂ f

∂r

)
+

1
r2

[
∂

∂µ

(
(1− µ2)

∂ f
∂µ

)
+

1
1− µ2

∂2 f
∂ω2

]
, (431)

where µ is the cosine of the polar angle ϕ; ω is the azimuthal angle. The Laplacian is also often denoted as ~∇2

because it is equal to ~∇ · ~∇, where ~∇ is the gradient operator

~∇ f =
∂ f
∂r
~er +

1
r

[
−
√

1− µ2 ∂ f
∂µ

~eϕ +
1√

1− µ2

∂ f
∂ω

~eω

]
, (432)

and ~∇· is the divergence operator

~∇ · ~f =
1
r2

∂

∂r

(
r2 fr

)
+

1
r

[
− ∂

∂µ

(√
1− µ2 fϕ

)
+

1√
1− µ2

∂ fω

∂ω

]
. (433)

The operator in square bracket of the Laplacian is also known as the spherical Laplacian, i.e. the Laplacian on the
unit sphere:

∆S f =
∂

∂µ

(
(1− µ2)

∂ f
∂µ

)
+

1
1− µ2

∂2 f
∂ω2 . (434)

Spherical harmonics are eigenfunctions of the spherical Laplacian:

∆SY`,m = −`(`+ 1)Y`,m. (435)

Similarly we can have the spherical gradient and spherical divergence:

~∇S f = −
√

1− µ2 ∂ f
∂µ

~eϕ +
1√

1− µ2

∂ f
∂ω

~eω (436)

~∇S · ~f = − ∂

∂µ

(√
1− µ2 fϕ

)
+

1√
1− µ2

∂ fω

∂ω
. (437)

Because on the unit sphere, unit vectors are

~er =
√

1− µ2 cos ω~ex +
√

1− µ2 sin ω~ey + µ~ez, (438)

~eϕ =µ cos ω~ex + µ sin ω~ey −
√

1− µ2~ez, (439)

~eω =− sin ω~ex + cos ω~ey, (440)

~∇S f =

[
−µ
√

1− µ2 cos ω
∂ f
∂µ
− 1√

1− µ2
sin ω

∂ f
∂ω

]
~ex +

[
−µ
√

1− µ2 sin ω
∂ f
∂µ

+
1√

1− µ2
cos ω

∂ f
∂ω

]
~ey

+

[
(1− µ2)

∂ f
∂µ

]
~ez. (441)

It is noted that ~er = ~Ω. The angular momentum operator L in quantum mechanics is defined as −i~Ω× ~∇S . It is
noted that L2 = ∆S and Lz = −i ∂

∂ω . Two related operators are L± = Lx ± iLy, also known as ladder operators.
Angular momentum operators do not change the spherical harmonics degree. An important property for analyzing
the streaming term in radiation transport is

~ΩY`,m =
1

2`+ 1

(
~∇S + `~Ω

)
Yl,m −

1
2`+ 1

(~∇S − (`+ 1)~Ω)Y`,m, (442)

where the first and second parts on the right hand side contain only spherical harmonics of degree (` − 1) and
(`+ 1), respectively. This formula can be proved with solid spherical harmonics [94].
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The spherical harmonics addition theorem is

2πP`(~Ω · ~Ω′) = P`(µ0) =
`

∑
m=−`

Y`,m(~Ω)Y`,m(~Ω
′). (443)

The moments of the angular flux Ψg, and more generally of any function, are defined as follows:

Φg,`,m(~x) ≡
∫
S

Y`,m(~Ω)Ψg(~x, ~Ω)dΩ, (444)

allowing to expand Ψg using its moments:

Ψg(~x, ~Ω) =
∞

∑
`=0

`

∑
m=−`

Φg,`,m(~x) R`,m(~Ω). (445)

It is noted that because Y0,0 = 1 and {Y1,1, Y1,−1, Y1,0}T = ~Ω, the zeroth order and the first order moments are
scalar flux and currents. The PN approximation consists of truncating this expansion at degree N for any angular
dependent quantity. In particular, the angular flux is approximated as:

Ψg(~x, ~Ω) ≈ RT(~Ω)Φg(~x) =
N

∑
`=0

`

∑
m=−`

Φg,`,m(~x) R`,m(~Ω), (446)

where the paired spherical harmonics are defined as:

R`,m ≡
2`+ 1

w
Y`,m, (447)

with w being the total angular weight (w = 2 in 1D, w = 2π in 2D, w = 4π in 3D; a similar definition is used for the
unit sphere S , so much that

∫
S dΩ = w). This implies:∫

S
Y`,m(~Ω) R`′ ,m′(~Ω)dΩ = δ``′δmm′ . (448)

Furthermore we have defined:

R ≡
{

R`,m, m = −`, · · · , `; ` = 0, · · · , N
}

(449)

We use E` to denote the subspace of all spherical harmonics of degree `, whose dimension is 1, `+ 1 and 2`+ 1 for
1D, 2D and 3D respectively. We use E` as the subspace of all spherical harmonics of degree less than or equal to `

E` = ⊕`
`′=0E`′ , (450)

whose dimension is `+ 1, (`+1)(`+2)
2 and (`+ 1)2 for 1D, 2D and 3D respectively. The order of the subspace E` is then

said to be `. For a given set of spherical harmonics denoted as a vector Y, we call the minimum order of subspace
not contained by Y minus one as the order of the subspace denoted by L(Y). For example, {Y0,0, Y1,0, Y1,1, Y1,−1, Y2,0}
has order 1.

B.2 Matrices

Most PN kernels rely on the evaluation of angular matrices. In practice, they are computed using quadrature rules
which yield exact integration (to machine precision). We define them in this subsection:

~D ≡
∫
S
~Ω R(~Ω)RT(~Ω) dΩ, (451)

P ≡
∫
S

R(~Ω)RT(~Ω) dΩ = diag
{

2`+ 1
w

, m = −`, ..., ` ; ` = 0, ..., N
}

, (452)
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~~H ≡
∫
S

(
~Ω~ΩT

)
⊗ RRTdΩ, (453)

where ⊗ is the tensor product. In particular, for all u, v ∈ {1, ..., d}, we have:

Hu,v ≡
∫
S

ΩuΩvRRTdΩ. (454)

For the boundary conditions, we further define

L±(~n) ≡
∫
~Ω·~n≷0

|~Ω ·~n|R(~Ω)RT(~Ω) dΩ, (455)

and:

C ≡ diag
{
(−1)` , m = −`, ..., ` ; ` = 0, ..., N

}
. (456)

which implies:

L− = CL+C. (457)

In addition,

Q± ≡
∫
±~Ω·~nb>0

RRT dΩ. (458)

Besides, we define

N(~n) ≡
∫
~Ω·~nb<0

|~Ω ·~nb|R(~Ω)RT(~Ωr) dΩ, (459)

Lr ≡
∫
S
~Ω ·~nb R(~Ω)RT(~Ωr) dΩ , Qr =

∫
S

R(~Ω)RT(~Ωr) dΩ (460)

with ~Ωr = ~Ω− 2(~Ω ·~nb)~nb. In practice, the matrices L+ and N are evaluated for a particular direction~nb = ~ex (we
then refer to them as L0 and N0, respectively) and we use rotation matrices to compute them for the desired normal
vector. The rotation matrix has the following definition:

R(~n) ≡
∫
S

YnRTdΩ (461)

where Yn is the spherical harmonics evaluated in the rotated coordinate (with the polar angle aligned with ~n) with
a given direction ~Ω. These matrices can be analytically evaluated [95, 96] or numerically evaluated with Gauss-
Chebyshev angular quadrature in Section E.3 in Rattlesnake. It is noted that L+ is symmetric positive definite
and that rotating a matrix does not change its eigenvalues. Also, for the specific direction ~nb = ~ez, (Lr)`,m,`′ ,m′ =

(−1)(`
′+m′)~D`,m,`′ ,m′ ·~ez and (Qr)`,m,`′ ,m′ = (−1)(`

′+m′)P`,m,`′ ,m′ .

We detail the 2-D matrices in the P1 case for the interested reader.

The P matrix and ~D matrices for each spatial dimensions are given by:

P =


1

2π
0 0

0
3

2π
0

0 0
3

2π

 , Dx =


0

1
2π

0
1

2π
0 0

0 0 0

 , Dy =


0 0

1
2π

0 0 0
1

2π
0 0

 (462)

Also, for the particular direction~nb = ~ex, we have:

Qr =


1

2π
0 0

0 − 3
2π

0

0 0
3

2π

 , Lr =


0 − 1

2π
0

1
2π

0 0

0 0 0

 (463)
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Q± =


1

4π
± 3

8π
0

± 3
8π

3
4π

0

0 0
3

4π

 , L± =


1

8π
± 1

4π
0

± 1
4π

9
16π

0

0 0
9

32π

 (464)

B.3 Boundary types

The previous half-range angular matrices – namely L+, L− and N – are used to evaluate boundary terms. Although
we have shown the most common definition for these matrices, other options also exist, which are detailed here.

These originate from different ways to treat vacuum boundary terms [50]:

〈Ψ∗, Ψ〉+∂Ds
−
〈

Ψ∗, Ψinc
〉−

∂Ds
=



〈Ψ∗, Ψ〉+∂Ds
−
〈
Ψ∗, Ψinc〉−

∂Ds
, SAAF〈

Ψ∗, Ψ + Ψ(−~Ω)−Ψinc(−~Ω)
〉+

∂Ds
−
〈
Ψ∗, Ψinc〉−

∂Ds
, EVEN〈

Ψ∗, Ψ−Ψ(−~Ω) + Ψinc(−~Ω)
〉+

∂Ds
−
〈
Ψ∗, Ψinc〉−

∂Ds
, ODD

〈Ψ∗, Ψ〉+∂Ds
+
〈
Ψ∗, Ψ− 2Ψinc〉−

∂Ds
, PE

(465)

After performing the PN expansion, we obtain:

〈Ψ∗, Ψ〉+∂Ds
=



(
Φ∗,RTL0RΦ−RT(CL0C)RΦinc)

∂Ds
, SAAF(

Φ∗,RT(L0 + L0C)RΦ−RT(CL0C + L0C)RΦinc)
∂Ds

, EVEN(
Φ∗,RT(L0 − L0C)RΦ−RT(CL0C− L0C)RΦinc)

∂Ds
, ODD(

Φ∗,RT(L0 + CL0C)RΦ− 2RT(CL0C)RΦinc)
∂Ds

, PE

(466)

where Φinc is defined using an expansion of Ψinc ≡ RTΦinc (although the expansion is not unique as the values of
Ψinc for ~Ω ·~nb > 0 are arbitrary, the previous expressions are independent of that choice, as all terms are integrated
over ~Ω ·~nb < 0).

Therefore, the more general forms of the L+ and L− matrices are given in Table 47.

Table 47 Matrices for vacuum boundary conditions available in Rattlesnake.

Type L+ L−

SAAF RTL0R RT(CL0C)R
EVEN RT(L0 + L0C)R RT(CL0C + L0C)R
ODD RT(L0 − L0C)R RT(CL0C− L0C)R

PE RT(L0 + CL0C)R 2RT(CL0C)R

Similarly, there are several ways to treat reflecting boundary terms [50]:

〈Ψ∗, Ψ〉+∂Dr
− 〈Ψ∗, Ψr〉−∂Dr

=


〈Ψ∗, Ψ〉+∂Dr

− 〈Ψ∗, Ψr〉−∂Dr
, SAAF

〈Ψ∗, Ψ〉+∂Dr
−
〈

Ψ∗, Ψ+Ψr
2

〉−
∂Dr
−
〈

Ψ∗, −Ψ+Ψr
2

〉+
∂Dr

, SYM

〈Ψ∗, Ψ〉+∂Dr
−
〈

Ψ∗, Ψ+Ψr
2

〉−
∂Dr
−
〈

Ψ∗, Ψ−Ψr
2

〉+
∂Dr

, NSYM

(467)

After performing the PN expansion, we obtain:

〈Ψ∗, Ψ〉+∂Dr
− 〈Ψ∗, Ψr〉−∂Dr

=



(
Φ∗,RT(L0 −N0)RΦ

)
∂Dr

, SAAF(
Φ∗,RT(L0 − CL0C+N0

2 +
L0−NT

0
2 )RΦ

)
∂Dr

, SYM(
Φ∗,RT(L0 − CL0C+N0

2 − L0−NT
0

2 )RΦ

)
∂Dr

, NSYM

(468)
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Similar expressions are obtained for the LS scheme (see Section 3.3.3):

〈Ψ∗, Ψ−Ψr〉−∂Dr
=



(
Φ∗,RT(CL0C−N0)RΦ

)
∂Dr

, SAAF(
Φ∗,RT(CL0C−N0

2 +
L0−NT

0
2 )RΦ

)
∂Dr

, SYM(
Φ∗,RT(CL0C−N0

2 − L0−NT
0

2 )RΦ

)
∂Dr

, NSYM

(469)

In the code, the matrices are defined N+ and N− with their definitions given in Table 48.

Table 48 Matrices for reflecting boundary conditions available in Rattlesnake.

Type N+ N−

SAAF RT(L0 −N0)R RT(CL0C−N0)R
SYM RT(L0 − CL0C+N0

2 +
L0−NT

0
2 )R RT(CL0C−N0

2 +
L0−NT

0
2 )R

NSYM RT(L0 − CL0C+N0
2 − L0−NT

0
2 )R RT(CL0C−N0

2 − L0−NT
0

2 )R
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C Streaming in Curvilinear Coordinates

Because the streaming operator has different forms in curvilinear coordinates than in Cartesian coordinates, we
present the streaming operator in curvilinear coordinates here. The detailed derivation of the streaming forms can
be found in Ref. [3]. We simply copy three tables in Ref. [3] for Cartesian coordinate, spherical coordinate and cylin-
drical coordinate with the modified notations consistent with this manual. Streaming in Cartesian coordinate is
presented in Table 49 for completeness. Conservation forms in curvilinear coordinates are used in Table 50 and Ta-
ble 51. Volume differential elements dx are presented in the last column for reference. We often find using ~Ω · ~∇Ψ
as the streaming operator is confusing in curvilinear coordinates, so we use a new notation ∂~ΩΨ. In Cartesian coor-
dinate, ∂~ΩΨ = ~Ω · ~∇Ψ = ~∇ · (~ΩΨ). But none of the these three notations is equivalent in curvilinear coordinates.
At the end, we give the curvilinear part of the streaming operator.

Cartesian coordinate:

Table 49 Streaming operator for Cartesian coordinate.

Spatial Angular
Dima variables variables ∂~ΩΨ dx

1 x µ Ωx
∂Ψ
∂x dx

2 x, y µ, ω Ωx
∂Ψ
∂x + Ωy

∂Ψ
∂y dx dy

3 x, y, z µ, ω Ωx
∂Ψ
∂x + Ωy

∂Ψ
∂y + Ωz

∂Ψ
∂z dx dy dz

a Dimensions.

The polar angle ϕ ∈ [0, π] is with respect to the fixed direction êx at every spatial point. It is typically use the cosine
of the polar angle µ = cos ϕ as the polar variable. And the azimuthal angle ω is measured in the plane of êy, êz
starting from êy. Thus

Ωx = µ, (470a)

Ωy =
√

1− µ2 cos ω, (470b)

Ωz =
√

1− µ2 sin ω, (470c)

~Ω ≡ (Ωx, Ωy, Ωz). (470d)

Spherical coordinate:

Table 50 Streaming operator for spherical coordinate in conservation form.

Spatial Angular
Dim variables variables ∂~ΩΨ dx

1 r µ Ωr
r2

∂
∂r (r

2Ψ) + 1
r

∂
∂µ

[(
1− µ2)Ψ

]
4πr2 dr

2 r, φ µ, ω Ωr
r2

∂
∂r (r

2Ψ) + 1
r

∂
∂µ

[(
1− µ2)Ψ

]
+

Ωφ

r sin φ
∂

∂φ (sin φΨ)− cos φ
r sin φ

∂
∂ω (ΩθΨ) 2πr2 sin φ dr dφ

2 r , θ µ, ω Ωr
r2

∂
∂r (r

2Ψ) + 1
r

∂
∂µ

[(
1− µ2)Ψ

]
− cos φ

r sin φ
∂

∂ω (ΩθΨ) + Ωθ
r sin φ

∂Ψ
∂θ r2 sin φ dr dθ

3 r, φ, θ µ, ω Ωr
r2

∂
∂r (r

2Ψ) + 1
r

∂
∂µ

[(
1− µ2)Ψ

]
+

Ωφ

r sin φ
∂

∂φ (sin φΨ)− cos φ
r sin φ

∂
∂ω (ΩθΨ) + Ωθ

r sin φ
∂Ψ
∂θ r2 sin φ dr dθ dφ

θ ∈ [0, 2π] is the azimuthal angle in space. φ ∈ [0, π] is the polar angle in space. The polar angle ϕ ∈ [0, π] is with
respect to the direction êr at the spatial point. It is typically use the cosine of the polar angle µ = cos ϕ as the polar
variable. And the azimuthal angle ω is measured in the plane of êθ , êφ starting from êθ . Thus

Ωr = µ, (471a)

Ωφ =
√

1− µ2 cos ω, (471b)

Ωθ =
√

1− µ2 sin ω, (471c)
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~Ω ≡ (Ωr, Ωφ, Ωθ). (471d)

Cylindrical coordinate:

Table 51 Streaming operator for cylindrical coordinate in conservation form.

Spatial Angular
Dim variables variables ∂~ΩΨ dx

1 r µ, ω Ωr
r

∂
∂r (rΨ)− 1

r
∂

∂ω (ΩθΨ) 2πr dr
2 r, θ µ, ω Ωr

r
∂
∂r (rΨ)− 1

r
∂

∂ω (ΩθΨ) + Ωθ
r

∂Ψ
∂θ r dr dθ

2 r, z µ, ω Ωr
r

∂
∂r (rΨ)− 1

r
∂

∂ω (ΩθΨ) + Ωz
∂Ψ
∂z 2πr dr dz

3 r, θ, z µ, ω Ωr
r

∂
∂r (rΨ)− 1

r
∂

∂ω (ΩθΨ) + Ωθ
r

∂Ψ
∂θ + Ωz

∂Ψ
∂z r dr dθ dz

θ ∈ [0, 2π] is the azimuthal angle in space. The polar angle ϕ ∈ [0, π] is with respect to the fixed z-direction êz at
the spatial point. It is typically use the cosine of the polar angle µ = cos ϕ as the polar variable. And the azimuthal
angle ω is measured in the plane of êr, êθ starting from êr. Thus

Ωz = µ, (472a)

Ωr =
√

1− µ2 cos ω, (472b)

Ωθ =
√

1− µ2 sin ω, (472c)

~Ω = (Ωz, Ωr, Ωθ) . (472d)

It is more convenient to split the streaming operator into two parts

∂~ΩΨ = ~∇ ·
(
~ΩΨ

)
+ EΨ, (473)

where

EΨ ≡ ∂~ΩΨ− ~∇ ·
(
~ΩΨ

)
(474)

and ~∇· is the normal divergence operator in all types of coordinates. We also define

E2Ψ ≡ ~∇ ·
(
~ΩΨ

)
− ~Ω · ~∇Ψ, (475)

where ~∇ is the normal gradient operator. The operators EΨ and E2Ψ for all coordinates in 3D are summarized
in Table 52.

Table 52 Curvilinear part of the streaming operator.

Coordinate
type EΨ E2Ψ

Cartesian 0 0
Spherical 1

r
∂

∂µ

[(
1− µ2)Ψ

]
− cos φ

r sin φ
∂

∂ω (ΩθΨ)
(

2Ωr
r + Ωφ

cos φ
r sin φ

)
Ψ

Cylindrical − 1
r

∂
∂ω (ΩθΨ) Ωr

r Ψ

This split is useful for understanding integration by parts and boundary conditions with divergence theorem:∫
D

Ψ∗~∇ · (~ΩΨ) dx =
∫
D
~∇ · (~ΩΨΨ∗) dx−

∫
D

Ψ~Ω · ~∇Ψ∗ dx =
∫

∂D
ΨΨ∗~Ω ·~nb ds−

∫
D

Ψ~Ω · ~∇Ψ∗ dx,

or with shorter notation (
Ψ∗, ~∇ · (~ΩΨ)

)
= 〈Ψ∗, Ψ〉 −

(
~Ω · ~∇Ψ∗, Ψ

)
. (476)
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The volume differential element dx has been provided for all coordinates. The heuristic way of obtaining the area
element~nb ds is provided in the following. If the surface is defined by

x = x(u, v); y = y(u, v); z = z(u, v), (477a)

~nb ds = ~Tu × ~Tv du dv, (477b)

with the tangent vectors

~Tu =
∂x
∂u

~ex +
∂y
∂u

~ey +
∂z
∂u

~ez, (477c)

~Tv =
∂x
∂v
~ex +

∂y
∂v
~ey +

∂z
∂v
~ez. (477d)

The boundary of a mesh is composed of boundary side, each of which is defined by the nodes on the side. Thus,
mesh framework can evaluate the outward normals and quadrature weights (area) on the quadrature points. The
surface integral can be evaluated numerically. With curvilinear coordinates, normals and weights can be provided
in a coordinate agnostic way. For example in R-Z coordinate, a surface can be defined as

x = r(z) cos θ

y = r(z) sin θ

z = z.

Surface integral of a vector v = aêr + bêz =

a cos θ
a sin θ

b

 over such a surface would be

∫ zmax

zmin

∫
2π

v · r

− sin θ
cos θ

0

×
rz cos θ

rz sin θ
0

+

0
0
1

 dθ dz

=
∫ zmax

zmin

∫
2π

v · r

cos θ
sin θ

rz

 dθ dz

=
∫ zmax

zmin

[
a
b

]
·
[

1
rz

]
2πr dz

=
∫

S
v ·~nb 2πr ds,

with ds =
√

1 + r2
z dz and ~nb = 1√

1+r2
z
(êr + rz êz). We also use S to denote the surface. The notation in the last

step of derivation can be used for general surfaces. The boxed 2πr is the extra area element for R-Z coordinate.
This extra area element corresponds to the volume differential element dx, so we can extend it for other curvilinear
coordinates.
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D Phase Function

D.1 Definition of phase function

A phase function f (~Ω, ~Ω′) – also known as the scattering kernel – is a function for redistributing radiation from the
incoming directions ~Ω′ to a certain outgoing direction ~Ω. The scattering operator S[Ψ] can be written as

S[Ψ] ≡ Σs

∫
S

f (~Ω, ~Ω′)Ψ(~Ω′) dΩ′. (478)

By definition, the phase function should not cause radiation extinction, i.e.∫
S

f (~Ω, ~Ω′) dΩ = 1. (479)

For isotropic media, the phase function only depends on the cosine of the angle suspended by the incoming and
outgoing directions, i.e. ~Ω · ~Ω′. We thus define µ0 ≡ ~Ω · ~Ω′ and also apply a factor 2π for the azimuthal symmetry:

f (µ0) ≡ 2π f (~Ω · ~Ω′). (480)

If we denote

~Ω = (µ,
√

1− µ2 cos ω,
√

1− µ2 sin ω)T , (481)

~Ω′ = (µ′,
√

1− µ′2 cos ω′,
√

1− µ′2 sin ω′)T , (482)

we can see that
µ0 ≡ ~Ω · ~Ω′ = µµ′ +

√
1− µ2

√
1− µ′2 cos(ω−ω′). (483)

Now the condition for the phase function becomes∫ 1

−1
f (µ0) dµ0 = 1, (484)

and the scattering operator is

S[Ψ] ≡ Σs

∫
S

1
2π

f (µ0)Ψ(~Ω′) dΩ′. (485)

The phase function can be expanded with Legendre polynomials

f (µ0) =
∞

∑
`=0

2`+ 1
2

f`P`(µ0), (486)

where

f` =
∫ 1

−1
f (µ0)P`(µ0) dµ0. (487)

With the addition theorem, the phase function can be expanded with spherical harmonics

f (~Ω · ~Ω′) = 1
2π

f (µ0) =
∞

∑
`=0

2`+ 1
4π

f`
`

∑
m=−`

Y`,m(~Ω)Y`,m(~Ω
′), (488)

or written in matrix-vector product form as

f (~Ω · ~Ω′) = YT(~Ω)FY(~Ω′), (489)

where Y is the column vector formed by all spherical harmonics and F is the diagonal matrix containing the phase
function moments with a factor 2`+1

4π .
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D.2 Common phase functions

Below, we list the phase functions that are available in Rattlesnake.

D.2.1 Isotropic

The simplest phase function possible does not present any anisotropy and is given by:

f (µ0) =
1
2

. (490)

D.2.2 Rayleigh

The Rayleigh phase function is defined as:

f (µ0) =
3
8
(1 + µ2

0). (491)

D.2.3 Henyey-Greenstein

Given a function h = h(t,~x), the Henyey-Greenstein phase function is defined as:

f (µ0) =
1− h2

2(1 + h2 − 2hµ)3/2 . (492)

D.2.4 Heaviside

The Heaviside phase function is defined as:

f (µ0) =

{
1 , µ0 > 0
0 , otherwise

. (493)

D.2.5 Dirac

Given µ̃ ∈ [−1, 1], the Dirac phase function is defined as:

f (µ0) = δ(µ0 − µ̃) (494)

where δ represents the delta Dirac function.

In practice, only its truncated version is currently available in Rattlesnake:

f (µ0) ≈
L

∑
`=0

2`+ 1
2

P`(µ̃)P`(µ0). (495)

where P` is the Legendre polynomial of degree ` and L is the truncation degree.
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D.3 Scattering treatments for SN

D.3.1 PN treatment

The default way in Rattlesnake is to express the scattering operator using a spherical harmonics expansion of Ψ,
truncated at degree L:

(SΨ)g =
G

∑
g′=1

∫
4π

Σs,g′→g
f (µ0)

2π
Ψg′(~Ω

′)dΩ′ ≈
G

∑
g′=1

L

∑
`=0

2`+ 1
w

Σg′→g
s,`

`

∑
k=−`

Φg′ ,`,kY`,k(~Ω). (496)

where, as a reminder w is the total angular weight (2 in 1-D, 2π in 2-D and 4π in 3-D) with in particular w = ∑m wm.
The angular moments are computed using:

Φg,`,k =
M

∑
m′=1

wm′Ψg,m′Y`,k(~Ωm′). (497)

The direction-to-moment matrix is then:
D(`,k),m = wmY`,k(~Ωm) (498)

where we have defined D as:
Φg ≡ DΨg. (499)

In addition, the angular flux being expressed as:

Ψg(~Ω) ≈
L

∑
`=0

2`+ 1
w

`

∑
k=−`

Φg,`,kY`,k(~Ω) = RTΦg (500)

the moment-to-direction matrix is:
Mm,(`,k) = R`,k(~Ωm) (501)

where we have definedM as:
Ψg ≡MΦg. (502)

In particular, assuming that the angular quadrature was chosen such that it can integrate exactly all the spherical
harmonics up to degree L, we have:

DM = I (503)

where I is the identity matrix (of size M).

In 1-D or 2-D, if the external source is also expanded as Qext
g = RTQg, nothing needs to be changed in the code: the

value of w in the definition of R is scaled accordingly to make sure the solution for the scalar flux is unchanged.

D.3.2 SN treatment

In Rattlesnake, we have two SN treatments [97] to express the scattering source which we refer to as sampling and
patch methods. Both rely on constructing a direction-to-direction matrix. Let us recall the expression of the scattering
source:

(SΨ)g(~Ω) =
G

∑
g′=1

Σs,g′→g

∫
4π

f (µ0)

2π
Ψg′(~Ω

′)dΩ′, (504)

In the sampling method, if the angular flux depends on all three spatial dimensions, we directly use the full-sphere
angular quadrature for integration purposes:

(SΨ)g,m ≈
G

∑
g′=1

Σs,g′→g

N

∑
m′=1

f (~Ωm · ~Ωm′)

2π
Ψg′ ,m′wm′ , (505)

with N being the total number of directions, the subscript indicating the direction index and w being the angular
weight. In reduced geometries, more care is required because the angular quadrature does not span the entire unit
sphere.
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The main difference in the patch method is that the unit sphere is decomposed in non-overlapping patches of the
unit sphere S =

⋃
m′ Sm′ where Sm′ contains the direction ~Ωm′ and we express the scattering source as:

(SΨ)g,m ≈
G

∑
g′=1

Σs,g′→g

N

∑
m′=1

∫
Sm′

f (~Ωm · ~Ω′)
2π

d~Ω′ Ψg′ ,m′ , (506)

1-D SN Treatment

With a problem depending only on one spatial direction, the axes can be chosen such that Ψ does not depend
on ω. Then, defining:

g(µ, µ′) ≡
∫ 2π

0

f (µ0)

2π
dω′, (507)

where, as a reminder,

µ0 ≡ ~Ω · ~Ω′ = µµ′ +
√

1− µ2
√

1− µ′2 cos(ω−ω′), (508)

we have: ∫
4π

f (µ0)

2π
Ψ(~Ω′)dΩ′ =

∫ 1

−1
g(µ, µ′)Ψ(µ′)dµ′. (509)

The scattering source in the sampling method can then be approximated using:

(SΨ)g,m ≈
G

∑
g′=1

Σs,g′→g

N

∑
m′=1

g(µm, µm′)Ψg′ ,m′wm′ . (510)

The reduced function g depends on both µ and µ′.
Likewise, in the patch method, it is:

(SΨ)g,m ≈
G

∑
g′=1

Σs,g′→g

N

∑
m′=1

∫
Sm′

g(µm, µ′)dµ′ Ψg′ ,m′ . (511)

2-D SN Treatment

With a problem depending on two spatial dimensions, we can choose to have Ψ be an even function of µ. With
the following definition,

g(µ, µ′, µ0) ≡
f (µ0) + f (µ0 − 2µµ′)

2
, (512)

one can show that, ∫
4π

f (µ0)

2π
Ψ(~Ω′)dΩ′ =

∫ 1

0

∫ 2π

0

g(µ, µ′, µ0)

π
Ψ(µ′, ω′)dω′dµ′. (513)

The scattering source may then computed as follows in the sampling method:

(SΨ)g,m ≈
G

∑
g′=1

Σs,g′→g

N

∑
m′=1

g(µm, µm′ , ~Ωm · ~Ωm′)

π
Ψg′ ,m′wm′ . (514)

and as:

(SΨ)g,m ≈
G

∑
g′=1

Σs,g′→g

N

∑
m′=1

∫
Sm′

g(µm, µ′, ~Ωm · ~Ω′)
π

d~Ω′ Ψg′ ,m′ . (515)

in the patch method. The reduced function g then depends on µ, µ′ and (ω−ω′).
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D.3.3 SN-PN equivalency

In this section, we assume that f can be expanded using a Legendre polynomials expansion of degree L:

f (µ0) =
L

∑
`=0

2`+ 1
2

f`P`(µ0), (516)

and show that the PN and SN treatments are then equivalent.
First of all, in an SN calculation, the moment Φ`,k is evaluated using:

Φ`,k =
M

∑
m′=1

wm′Ψm′Y`,k(~Ωm′). (517)

Next, we consider the contribution of the scattering source to the direction ~Ωm:

(HΨ)m =
L

∑
`=0

2`+ 1
4π

σs,`

`

∑
k=−`

Φ`,kY`,k(~Ωm),

=
M

∑
m′=1

wm′Ψm′
L

∑
`=0

2`+ 1
4π

σs,`

`

∑
k=−`

Y`,k(~Ω
′
m)Y`,k(~Ωm).

(518)

Using the spherical harmonics addition theorem:

`

∑
k=−`

Y`,k(~Ω
′
m)Y`,k(~Ωm) = P`(µ0), (519)

we have:

(HΨ)m =
M

∑
m′=1

wm′Ψm′
L

∑
`=0

σs,`
2`+ 1

4π
P`(µ0). (520)

In other words, using Eq. (516),

(HΨ)m = σs

M

∑
m′=1

f (µ0)

2π
wm′Ψm′ , (521)

which is equal to Eq. (505).
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E Angular Quadratures

E.1 General discussions

An angular quadrature
{
~Ωd, wd, d = 1, · · · , Nd

}
is designed to numerically integrate a function Ψ(~Ω) over the

angular domain ∫
S

Ψ(~Ω) dΩ =
Nd

∑
d=1

wdΨ(~Ωd). (522)

We adopt the first element of ~Ω as the cosine of the polar angle and measure the azimuthal angle from the second
axis as illustrated in Fig. 11:

2

3

1

Figure 11 Angular coordinates for angular quadratures.

Ω1 = µ, (523a)

Ω2 =
√

1− µ2 cos ω, (523b)

Ω3 =
√

1− µ2 sin ω, (523c)

where µ is in [−1, 1]; the dependency on ω can be dropped in 1D, and ω is in [0, π] and in [0, 2π] for 2D and 3D
respectively. It is traditional to give a shorter notation for Ω1, Ω2 and Ω3 as µ, η, and ξ respectively. Thus the three
axis are called µ, η, or ξ axis. Although we typically choose Ω1 = Ωx, it is often desired that the angular quadrature
can switch the axis with respect to the spatial coordinate because the resolution of the angular quadrature with
respect to each axis can be different. For instance, in calculations with production quadratures, it is typical to let
Ω1 = Ωz because the heterogeneity is not as significant in the z-direction.

With the exception of biased or especially tailored quadratures, most angular quadratures have the planar symme-
tries, i.e. −µ is in the quadrature if µ is in the quadrature in 1D, (−µ, π − ω) is in the quadrature if (µ, ω) is in
the quadrature in 2D, (−µ, mod(π + ω, 2π)) is in the quadrature if (µ, ω) is in the quadrature in 3D. The product
of two spherical harmonics Y`,m and Y`′ ,m′ can be exactly integrated except when `+ `′ and m + m′ are even and
m×m′ ≥ 0. Because of this, angular quadratures are typically designed in the first octant and then extended to the
other octants.

It is desired that angular quadratures can exactly integrate spherical harmonics

∫
S

R`,m(~Ω) dΩ =
Nd

∑
d=1

wdR`,m(~Ωd) = δ`,0. (524)
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This property is commonly referred to as the conservation because of its relation with conservation in the scattering
operator: ∫

S
S[Ψ] dΩ =

L

∑
`=0

2`+ 1
4π

Σs,`

`

∑
m=−`

∫
S

Y`,m(~Ω) dΩΦ`,m = ΣsΦ. (525)

This property must hold for spherical harmonics whose order ` is less than or equal to the scattering anisotropy L
in the phase function to preserve the particle during a scattering event.

The vector of angular moments Φ of a function Ψ(~Ω) is defined as the inner product of the function and the vector
of spherical harmonics Y over the sphere

Φ ≡ (Ψ, Y)S =
∫
S

ΨY dΩ. (526)

We denote the size of the vectors Φ and Y as N`. The moment-to-direction matrix MNd×N`
can be generated by

simply sampling the function over the directions in the angular quadrature. Its elements are

Mi,j = R`(j),m(j)(~Ωi), (527)

where `(j), m(j) respectively are the spherical harmonics degree and order corresponding to the index j in the
spherical harmonics vector. With the angular quadrature we can define a direction-to-moment matrix DN`×Nd with
elements

Di,j = wjY`(i),m(i)(~Ωj), (528)

which is equal to MTW, where W = diag
{

w1, · · · , wNd

}
. One desired property is that the product of the direction-

to-moment and moment-to-direction matrices should not change the original function at the directions in the angu-
lar quadrature, i.e.

MD = I. (529)

This requires at least N` ≥ Nd. We typically just make N` = Nd. We call this property transform invertibility. We refer
to angular quadratures having this property as so-called Galerkin quadratures. This property is particularly impor-
tant for handling forward-peaked scattering, where the phase function is close to δ(µ0− 1). To exactly integrate the
scattering kernel δ(µ0 − 1), the angular quadrature need satisfy transform invertibility for a given set of spherical
harmonics.

Sδ[Ψ] =
∫
S

δ(µ0 − 1)Ψ(~Ω′) dΩ′ = Ψ(~Ω). (530)

We can prove that the transform invertibility holds for Gaussian quadratures with 2N points and the Legendre
polynomials of degree from 0 to 2N − 1 in 1D. The property is however not valid for other 1D quadratures or
for general multi-dimension angular quadratures. There are two ways of modifying the angular quadratures to
maintain this property:

1. using the collocation approach to redesign the direction-to-moment matrix, which will be essentially the in-
version of the moment-to-direction matrix.

2. changing the way of generating the moment-to-direction matrix from sampling to simply inverting the direction-
to-moment matrix.

Either way, we need to make sure that the subset of spherical harmonics Y results in an invertible moment-to-
direction matrix while maximizing the subspace order L(Y).

The collocation method first finds an approximate solution in a subspace spanned by interpolation sphere functions
fd(~Ω), d = 1, · · · , Nd, which satisfy the condition

fd(~Ωd′) = δdd′ , 1 ≤ d, d′ ≤ Nd. (531)

The continuous function Ψ(~Ω) can be constructed with values on discrete directions specified by the angular
quadrature Ψd, d = 1, · · · , Nd as

Ψ(~Ω) =
Nd

∑
d=1

Ψd fd(~Ω). (532)
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Then we can analytically integrate Eq. (526) to get the direction-to-moment matrix

Di,j =
∫
S

Y`(i),m(i)(~Ω) f j(~Ω) dΩ. (533)

There are different ways of constructing the interpolation functions, such as finite element on sphere, spherical
harmonics expansion, etc. We will explore the spherical harmonics method and show that the resulting direction-
to-moment matrix is simply the inversion of the moment-to-direction matrix. We let the interpolation subspace be
the same as the subspace spanned by the spherical harmonics in Y. Then we have

fd(~Ω) = aT
d Y, (534)

where a contains the expansion coefficients of fd. If we define

f ≡

 f1
...

fNd

 , A ≡

 aT
1
...

aT
Nd

 , (535)

we have f = AY. Because of the orthogonality of spherical harmonics, A = D. Based on the constraints, we
eventually have AM = DM = I. Collocation methods also provide a way of obtaining an angularly continuous
function Ψ̄(~Ω) with Ψ(~Ωd), d = 1, · · · , Nd for approximating Ψ(~Ω). We can then use Ψ̄(~Ω) to evaluate values at a
direction not necessarily in the quadrature, angular derivatives required by curvilinear coordinates, etc. The general
interpolation capability is however not implemented for all angular quadratures currently in Rattlesnake.

Two angular derivatives need to be evaluated in curvilinear coordinates (refer to Appendix C): ∂
∂µ

[(
1− µ2)Ψ

]
and

sin ω ∂Ψ
∂ω . One task is to evaluate these derivatives by only knowing the function on the discrete directions of the

angular quadrature Ψd, d = 1, · · · , Nd. We define two coefficient matrices α-matrix and β-matrix for evaluating the
two derivatives as follows:

sin ω
∂Ψ
∂ω

∣∣∣∣
~Ω=~Ωd

=
Nd

∑
d′=1

αd,d′Ψd′ , (536)

∂

∂µ
[(1− µ2)Ψ]

∣∣∣∣
~Ω=~Ωd

=
Nd

∑
d′=1

βd,d′Ψd′ . (537)

The angular quadrature is capable of evaluating the angular derivatives if those coefficient matrices are assembled.
We currently have only implemented the µ-derivative for the 1D Gaussian quadrature and the ω-derivative for the
Level-Symmetric quadrature.

E.1.1 Polar derivative

Ref. [3] provides one way to obtain these βs. We let

∂

∂µ

[
(1− µ2)Ψ

]∣∣∣∣
µ=µd

= 2
αd+1/2Ψd+1/2 − αd−1/2Ψd−1/2

wd
, (538)

and obtain the constraints,

αNd+1/2 = α1/2 = 0, (539)

αd+1/2 = αd−1/2 − wdµd, d = 1, · · · , Nd. (540)

We also include the approximation

Ψd+1/2 = 2Ψd −Ψd−1/2, d = 1, · · · , Nd. (541)

We need a dummy direction with µ = −1 for Ψ1/2 indexed as d = 0 later to start solving the angular fluxes
sequentially from d = 1 to Nd. Eq. (536) on this dummy direction is simply equal to 2Ψ. We call this direction
dummy because its angular flux does not contribute to the evaluation of the angular flux moments. It is desired to
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add another dummy direction µ = 1 denoted with d = Nd + 1 for the adjoint calculation. We propose the following
equation

ΨNd+1 = 2ΨNd+1 − (2ΨNd −ΨNd−1/2). (542)

to artificially bring in the coupling from the directions of d = 0, · · · , Nd for this additional dummy direction. Finally,
we obtain

βd,d′ =



(−1)d 2
wd

(αd+1/2 + αd−1/2), d′ = 0, 0 < d ≤ Nd;
(−1)d′+d 4

wd
(αd+1/2 + αd−1/2), 0 < d′ < d, 0 < d ≤ Nd;

4
wd

αd+1/2, d′ = d, 0 < d ≤ Nd;
−2µ0 d′ = d = 0;
0 d′ > d; 0 ≤ d ≤ Nd
2, d′ = 0, d = Nd + 1;
(−1)d′4, 0 < d′ ≤ Nd; d = Nd + 1
−4 d′ = d = Nd + 1.

. (543)

We can prove

Nd

∑
d′=0

βd,d′ = −2µd. (544)

This implies that the µ-derivative is exactly evaluated with isotropic Ψ. The matrix formed by the βs is lower
triangular. Because this scheme enables the sequential solving of angular fluxes once the source is known, we refer
to it as the sweeping scheme. This scheme is only available for production quadratures, for which the polar and
azimuthal angles are constructed independently (this in particular excludes the Level-Symmetric quadrature).

We also present another new way of evaluating the µ-derivative. Numerical results show the superior angular
convergence of this treatment. From the discrete angular fluxes Ψd, d = 1, · · · , Nd, we evaluate the angular flux
moments up to order Nd − 1 with

Φ` =
Nd

∑
d′=1

wd′P`(µd′)Ψd′ , ` = 0, · · · , Nd − 1, (545)

where P` is the Legendre polynomial of degree `. Then we can construct the continuous angular flux

Ψ(µ) =
Nd−1

∑
`=0

2`+ 1
2

P`(µ)
Nd

∑
d′=1

wd′P`(µd′)Ψd′ , (546)

which allows us to evaluate ∂
∂µ [(1− µ2)Ψ]

∣∣∣
µ=µd

as

Nd−1

∑
`=0

2`+ 1
2

((`− 1)µdP`(µd)− (l + 1)P`+1(µd))
Nd

∑
d′=1

wd′P`(µd′)Ψd′ , (547)

i.e.

βd,d′ =
Nd−1

∑
`=0

2`+ 1
2

((`− 1)µdP`(µd)− (l + 1)P`+1(µd))wd′P`(µd′). (548)

We can prove that Eq. (544) still holds for these βs. Because µd = −µNd+1−d, wd = wNd+1−d, d = 1, · · · , Nd/2, we
have

βNd+1−d,Nd+1−d′ = −βd,d′ , (549)

which is an appealing feature for adjoint calculations. With this treatment, β matrix is no longer lower triangular,
meaning that we do not perform an angular sweep to invert the streaming-plus-collision operator. However, this
is not necessarily considered a disadvantage with Rattlesnake’s solvers. Moreover this scheme does not require
dummy directions and works for all angular quadratures if the M angular flux moments can be constructed. Be-
cause this scheme involves the spherical harmonics (Legendre polynomials in 1D) expansion of the angular flux,
we refer to it as the PN scheme for evaluating the angular derivatives.
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E.1.2 Azimuthal derivative with PN expansion

The purpose of this section is to show how we can evaluate the azimuthal derivative of the angular flux Ψ with a
PN expansion. This is in particular used in Section 3.4.2.7 for the SAAF-SN-RZ method. The goal is to find the α’s
to evaluate the azimuthal derivative as: [

Ωθ
∂Ψ
∂ω

] ∣∣∣
Ωm

=
Nd

∑
n=1

αm,nΨn (550)

Yet, we have shown
Φ = AΨ (551)

i.e.9:

Φ`,k =
Nd

∑
n=1

Ap(`,k),nΨn (552)

In addition, one can show that:
∂R`,k

∂ω
= −kR`,−k (553)

implying:

Ωθ
∂Ψ
∂ω

= −
N`

∑
p=1

Φ`,kkΩθ R`,−k (554)

This then gives us:

αm,n = −
N`

∑
p=1

kΩθ,mR`,−k(~Ωm)Ap(`,k),n. (555)

Three angular quadratures are implemented in Rattlesnake: LS (Level-Symmetric), GC (Gauss-Chebyshev) and BO
(Bickley-3 Optimized). Their capabilities are illustrated in Table 53.

Table 53 The angular quadrature capability matrix.

Scheme 1D 2D 3D Production Interpolation µ-deri ω-deri Galerkin
Level-Symmetric N Y Y N N N Y Y

Gauss-Chebyshev Y Y Y Y N Y N N
Bickley-3 Optimized N Y N Y N N N N

E.2 Level-Symmetric

The Level-Symmetric angular quadrature [98, 99] has the octant rotation invariance, i.e. the (µ, η, ξ) coordinates of
points on the unit sphere chosen to represent ~Ω are invariant under all 90-degree rotations about the µ, η, or ξ axis.
Thus the set of points on each axis must be the same. For n points on each axis [−1, 1], there are n(n+2)

8 points per
octant where n is a positive even number, which is often called the quadrature order. The arrangement of quadrature
points with n = 6 is illustrated in Fig. 12. Because of the symmetry, three indices i, j, k of the coordinates of a point on
the sphere sum to n/2+ 2, i.e. µ2

i + µ2
j + µ2

k = 1, where k = n/2+ 2− i− j; j = 1, · · · , n/2− i + 1; i = 1, 2, · · · , n/2.
This relation requires that

µ2
i = µ2

1 + (i− 1)
2(1− 3µ2

1)

N − 2
, (556)

where µ1 is a free parameter controlling the location of all quadrature points. Rotational invariance also dictates that
weights for points on the unit sphere should be chosen in a symmetric fashion, i.e. the directions of all permutations

9Another possibility is to use Φ`,k = ∑
Nd
n=1 wnY`,k(~Ωn)Ψn which then gives αm,n = −∑p∈N kΩθ,mR`,−k(~Ωm)wnY`,k(~Ωn).
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Figure 12 Completely symmetric point arrangement, n = 6.

of a given set of indices (i, j, k) must have the same weights. The number of distinct weights per octant Nw is equal
to

Nw = 1 + bN(N + 8)− 1
48

c, (557)

where b·c is the floor operator. We denote the distinct weight for a particular direction d as wj(d). For example,
the distinct weight IDs of n = 30 is illustrated in Fig. 13. µ1 and the distinct weights add up to the total Nw + 1

0  1  2  3  4  5  6  7  6  5  4  3  2  1  0

1  8  9 10 11 12 13 13 12 11 10  9  8  1

2  9 14 15 16 17 18 17 16 15 14  9  2
3 10 15 19 20 21 21 20 19 15 10  3

4 11 16 20 22 23 22 20 16 11  4
5 12 17 21 23 23 21 17 12  5
6 13 18 21 22 21 18 13  6
7 13 17 20 20 17 13  7

6 12 16 19 16 12  6

5 11 15 15 11  5
4 10 14 10  4
3  9  9  3
2  8  2
1  1

0

Figure 13 ID of distinct weights of n = 30.

free parameters. When µ1 is given, the same number of angular functions in form of µpηq are chosen denoted with
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(pi, qi), i = 0, · · · , Nw − 1 to determine Nw weights. The following Nw equations

Nd

∑
d=1

wj(d)µ
pi
d η

qi
d =

∫ 1

0
dµ
∫ π

2

0
dωµpi ηqi =

1
pi + 1

qi−1

∏
k=1,odd

k
pi + k + 2

, i = 0, · · · , Nw − 1, (558)

can thus be solved to obtain the Nw distinct weights. It is noted that (pi, qi) is necessary to be even because of the
symmetry. We can chose another extra angular functions (pNw , qNw) to determine µ1 by satisfying

f (µ1) =
Nd

∑
d=1

wj(d)µ
pNw
d η

qNw
d − 1

pNw + 1

qNw−1

∏
k=1,odd

k
pNw + k + 2

= 0. (559)

A Newton iteration can be used to find the root for this nonlinear equation. Level-Symmetric quadratures can
uniquely be determined by (pi, qi), i = 0, · · · , Nw. Table 54 summarizes the angular functions used for constructing
the Level-Symmetric quadratures. µ1 are also listed in Table 54. Distinct weights are not included in Table 54
because they can easily be evaluated with Eq. (558) given µ1. The maximum orders Lmax of spherical harmonics
that the quadratures can exactly integrate are also given in Table 54. They are almost always equal to n− 1 with
exceptions of smaller ns, such as 2, 4, 6, 8, 10, and 14. It is noted that there are negative weights starting from order
20.

Spherical harmonics are selected with the following rules to construct the interpolation sphere functions:{
{(l, m), m = 0, · · · , l; l = 0, · · · , n− 1; (l = n, m), m = 1, 3, · · · , n− 1} , 2D{
(l,m),m=−l,··· ,l;l=0,··· ,n−1;(l=n,m),m=−l+1,−l+3,··· ,n−1;
(l=n,m),m=−l,−l+2,··· ,−2;(l=n+1,m),m=−l+1,−l+3,··· ,−1

}
, 3D . (560)

The numbers of spherical harmonics in the selections are indeed equal to n(n+2)
2 and n(n + 2) for 2D and 3D respec-

tively.
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Table 54 Level-Symmetric quadrature.

Order Nw Moments: (pi, qi), i = 0 · · · , Nw − 1 (pNw , qNw) µ1 Lmax
2 1 (0,0) (2,0) 0.577350269189625764509149 3
4 1 (0,0) (4,0) 0.350021174581540677777041 5
6 2 (0,0), (4,0) (4,2) 0.266635401516704720331535 7
8 3 (0,0), (4,0), (6,0) (8,0) 0.218217890235992381266097 9

10 4 (0,0), (4,0), (6,0), (8,0) (6,4) 0.189321326478010476671494 11
12 5 (0,0), (4,0), (6,0), (8,0) (6,6) 0.167232497141491206371208 11

(10,0)
14 7 (0,0), (4,0), (6,0), (8,0), (8,6) 0.151985861461031912404799 15

(10,0), (12,0), (6,6)
16 8 (0,0), (4,0), (6,0), (8,0), (8,8) 0.138975694612626558498101 15

(10,0), (12,0), (6,6), (14,0)
18 10 (0,0), (4,0), (6,0), (8,0), (10,8) 0.129348112085829872872402 17

(10,0), (12,0), (6,6), (14,0),
(16,0), (8,8)

20 12 (0,0), (4,0), (6,0), (8,0), (10,10) 0.120620464081574425273591 19
(10,0), (12,0), (6,6), (14,0),
(16,0), (8,8), (18,0), (10,8)

22 14 (0,0), (4,0), (6,0), (8,0), (12,10) 0.113892684099307786159500 21
(10,0), (12,0), (6,6), (14,0),
(16,0), (8,8), (18,0), (10,8),
(20,0), (10,10)

24 16 (0,0), (4,0), (6,0), (8,0), (12,12) 0.107559189018123222298175 23
(10,0), (12,0), (6,6), (14,0),
(16,0), (8,8), (18,0), (10,8),
(20,0), (10,10), (22,0), (12,10)

26 19 (0,0), (4,0), (6,0), (8,0), (14,12) 0.102543854666975591668637 25
(10,0), (12,0), (6,6), (14,0),
(16,0), (8,8), (18,0), (10,8),
(20,0), (10,10), (22,0), (12,10),
(24,0), (14,10), (12,12)

28 21 (0,0), (4,0), (6,0), (8,0), (14,14) 0.0976979229188335649373355 27
(10,0), (12,0), (6,6), (14,0),
(16,0), (8,8), (18,0), (10,8),
(20,0), (10,10), (22,0), (12,10),
(24,0), (14,10), (14,12), (26,0),
(16,10)

30 24 (0,0), (4,0), (6,0), (8,0), (16,14) 0.0937869286135548109935698 29
(10,0), (12,0), (6,6), (14,0),
(16,0), (8,8), (18,0), (10,8),
(20,0), (10,10), (22,0), (12,10),
(24,0), (14,10), (14,12), (26,0),
(16,10), (28,0), (16,12), (14,14)

E.3 Gauss Chebyshev

The angular quadrature was proposed in [98, 100]. The angular integral is∫
S

dΩ =
∫ 1

−1
dµ
∫ 2π

0
dω. (561)

If we let cos ω = y, the integral becomes∫
S

dΩ = 2
∫ 1

−1
dµ
∫ 1

−1

1√
1− y2

dy. (562)
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If nc is the order of the Chebyshev quadrature, or the number of quadrature points on the circle divided by 2,
polynomials in y up to ym, where m ≤ 2nc − 1, are integrated exactly, The quadrature points are given by

yi = cos ωi, ωi =
π

2nc
+ i

π

nc
, i = 0, · · · , 2nc − 1. (563)

The equal weights are

wω,i =
π

nc
, i = 0, · · · , 2nc − 1. (564)

Chebyshev quadrature weights sum to π
2 in one octant. The abscissas for order ng Gaussian quadrature are roots of

the Legendre polynomial Png(µ). Its weights wµ,j, j = 1, · · · , ng can be evaluated with the abscissas and sum to 2.

Gauss-Chebyshev quadrature is a production quadrature with the polar and azimuthal angles being determined by
a Gaussian and Chebyshev quadrature, respectively. The weight is wω,iwµ,j, i = 0, · · · , 2nc − 1; j = 1, · · · , ng. The
Chebyshev quadrature of order N + 1 can exactly integrate the azimuthal component of the product of any two
spherical harmonics Yl,m and Yn,k, where l, n ≤ N. Since the integral over ω leads to δmk, the polar component of
the product Pl,mPn,m is a polynomial of degree l + n. If l, n ≤ N, Pl,mPn,m can be integrated exactly by a Gaussian
quadrature of order ng = N + 1. Thus the Gauss-Chebyshev quadrature can exactly integrate the product of any two
spherical harmonics up to degree N if ng = nc = N + 1. We typically specify the numbers of directions per octant,
i.e. ng/2 and nc/2 to construct the Gauss-Chebyshev quadrature. Because of the different angular resolutions in
polar and azimuthal, ng and nc are typically set differently. It is noted that the polar direction is also set to 3-rd
direction or z-direction because the heterogeneity in z-direction is typically significantly smaller than in the x-y
plane and ng can be chosen to be much smaller. Construction of the interpolation sphere functions is not available
for Gauss-Chebyshev quadrature currently.

E.4 Bickley-3 Optimized

Yamamoto, et al. [101] presented a polar angular quadrature whose quadrature points and weights are obtained by
minimizing the following function:

max
0≤x≤∞

∣∣Ki3(x)− K̄i3(x)
∣∣ , (565)

where

Kin(x) ≡
∫ π

2

0
sinn−1 θe−x/ sin θ dθ =

∫ 1

0
sinn−2 θe−x/ sin θ dµ, (566)

is the Bickley-Naylor function; µ is the cosine of the polar angle θ.

K̄in(x) ≡
M

∑
m=1

wm sinn−2 θme−x/ sin θm , (567)

is the approximation of the Bickley-Naylor function with an angular quadrature set {µm, wm, m = 1, · · · , M}, whose
weights have the following constraint:

M

∑
m=1

wm = 1. (568)

They showed that the results with this polar quadrature sets combined with the azimuthal Chebyshev quadrature,
termed as Bickly3-Optimized from now on, are more accurate than those with the Gauss-Chebyshev quadrature for
two-dimensional problems with isotropic scatterings. Later, Wang [102] developed a Remez algorithm to evaluate
the polar quadrature set up to order 10.

Polar quadrature sets for the Bickly3-Optimized quadrature are given in Table 55.

Table 55 Bickley3 optimized polar quadrature sets.

M µm wm
1 6.024131420387014(-1)10 1.000000000000000(-0)

10a - read as 6.024131420387014× 10−1.
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2 4.360958113484749(-1) 7.871457062207388(-1)
9.314378404484403(-1) 2.128542937792612(-1)

3 3.603647303112622(-1) 6.706042790023822(-1)
8.432845122259793(-1) 2.830561603802525(-1)
9.859174682982180(-1) 4.633956061736536(-2)

4 3.141875392954668(-1) 5.942539702959482(-1)
7.737261935507366(-1) 3.081802644914400(-1)
9.565700705377187(-1) 8.583055309397002(-2)
9.964908924759165(-1) 1.173521211864178(-2)

5 2.822123937782038(-1) 5.392298516673624(-1)
7.183367242066656(-1) 3.161569124601166(-1)
9.243890357401717(-1) 1.145258445609754(-1)
9.869210137447640(-1) 2.666114347502181(-2)
9.989805234100937(-1) 3.426247836523877(-3)

6 2.583733275426284(-1) 4.971386123696218(-1)
6.731541943779271(-1) 3.165413922838222(-1)
8.928184594761741(-1) 1.351413251200945(-1)
9.739501108108027(-1) 4.114408312220697(-2)
9.956751479051810(-1) 8.913999888857199(-3)
9.996671268418812(-1) 1.120587215397415(-3)

7 2.397120885176438(-1) 4.635909412993530(-1)
6.354694937374401(-1) 3.133163597564287(-1)
8.630154208969673(-1) 1.500090812844326(-1)
9.591269243416681(-1) 5.419762400157879(-2)
9.904912203462675(-1) 1.527035073134659(-2)
9.984467262851485(-1) 3.214840635447734(-3)
9.998810138141363(-1) 4.008022914124950(-4)

8 2.245880775349724(-1) 4.360367333581454(-1)
6.034457775633614(-1) 3.083426498170013(-1)
8.352991248138116(-1) 1.607860237675117(-1)
9.434126531176009(-1) 6.561305478313453(-2)
9.838604659459459(-1) 2.187028706967403(-2)
9.963154231626841(-1) 5.957654736248668(-3)
9.994020909797952(-1) 1.239567293457643(-3)
9.999542844306081(-1) 1.540291748268793(-4)

9 2.120076965583993(-1) 4.128790659026987(-1)
5.758072692682238(-1) 3.025568594322564(-1)
8.096644076737477(-1) 1.686133933860652(-1)
9.273952812402495(-1) 7.546385961182840(-2)
9.761684644230841(-1) 2.836709480974464(-2)
9.933431249206955(-1) 9.106738601716640(-3)
9.984927536729850(-1) 2.444203919514400(-3)
9.997561022316164(-1) 5.059965031046078(-4)
9.999813665750792(-1) 6.278783307103768(-5)

10 2.013290862332992(-1) 3.930599065541667(-1)
5.516424802433549(-1) 2.964536651014043(-1)
7.859829476099630(-1) 1.742812929119517(-1)
9.114327828719222(-1) 8.391482985532173(-2)
9.677252510878877(-1) 3.457727379475643(-2)
9.896402351776381(-1) 1.248193414958536(-2)
9.971339904004026(-1) 3.937595868490171(-3)
9.993534827244780(-1) 1.049773508736626(-3)
9.998955132558777(-1) 2.168378883868098(-4)
9.999920201513501(-1) 2.689036720028376(-5)
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It is noted that the polar direction is also set to 3-rd direction or z-direction because the heterogeneity in z-direction
is typically significantly smaller than in the x-y plane and ng can be chosen to be much smaller.
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F Multigroup Approximation

Integrate continuous-energy neutron transport equation over number G of energy intervals or groups
[
Eg, Eg−1

]
,

g = 1, · · · , G, we obtain

( ∂

∂t
1
vg

+ ~Ω · ~∇+ Σt,g
)
Ψg = Qext,g+

1
4π

G

∑
g′=1

χp,g,g′(1− βg′)νΣf,g′Φg′ +
G

∑
g′=1

∞

∑
`=0

2`+ 1
4π

`

∑
m=−`

Σg′→g
s,`,m Φg′ ,`,mY`,m(~Ω)

+
1

4π

I

∑
i=1

χd,g,iλiCi, (569a)

where

Ψg(~x, ~Ω, t) ≡
∫ Eg−1

Eg
Ψ(~x, ~Ω, E, t) dE, (569b)

Φg(~x, t) ≡
∫ Eg−1

Eg

∫
4π

Ψ(~x, ~Ω, E, t) dΩdE, (569c)

Φg,`,m(~x, t) ≡
∫ Eg−1

Eg

∫
4π

Ψ(~x, ~Ω, E, t)Y`,m(~Ω) dΩdE, (569d)

Qext,g(~x, ~Ω, t) ≡
∫ Eg−1

Eg
Qext(~x, ~Ω, E, t) dE, (569e)

1

vg(~x, ~Ω, t)
≡

∫ Eg−1
Eg

1
v(E)Ψ(~x, ~Ω, E, t) dE∫ Eg−1

Eg
Ψ(~x, ~Ω, E, t) dE

, (569f)

Σt,g(~x, ~Ω, t) ≡

∫ Eg−1
Eg

Σt(~x, E)Ψ(~x, ~Ω, E, t) dE∫ Eg−1
Eg

Ψ(~x, ~Ω, E, t) dE
, (569g)

νΣf,g(~x, t) ≡

∫ Eg−1
Eg

νΣ f (~x, E)Φ(~x, E, t) dE∫ Eg−1
Eg

Φ(~x, E, t) dE
, (569h)

βi,g(~x, t) ≡

∫ Eg−1
Eg

βi(~x, E)νΣ f (~x, E)Φ(~x, E, t) dE∫ Eg−1
Eg

νΣ f (~x, E)Φ(~x, E, t) dE
, (569i)

βg(~x, t) =
I

∑
i=0

βi,g(~x, t), (569j)

χp,g,g′(~x, t) ≡

∫ Eg−1
Eg

∫ Eg′−1
Eg′

χp(~x, E, E′)(1− β(~x, E′))νΣ f (E′)Φ(~x, E′, t) dE′ dE∫ Eg′−1
Eg′

(1− β(~x, E′))νΣ f (~x, E′)Φ(~x, E′, t) dE′
, (569k)

Σg′→g
s,`,m (~x, t) ≡

∫ Eg′−1
Eg′

[∫ Eg−1
Eg

Σs,`(~x, E′ → E) dE
]

Φ`,m(~x, E′, t) dE′∫ Eg′−1
Eg′

Φ`,m(~x, E′, t) dE′
, (569l)

and

χd,g,i(~x) ≡
∫ Eg−1

Eg
χd,i(~x, E) dE. (569m)

The delayed neutron precursor equation becomes

∂Ci
∂t

=
G

∑
g′=1

βi,g′νΣf,g′Φg′ − λiCi, i = 1, · · · , I. (569n)
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We often generate the prompt fission spectrum χp without the g′ dependency and delayed neutron precursor frac-
tion βi without the g dependency with

βi(~x, t) ≡
∑G

g=1
∫ Eg−1

Eg
βi(~x, E)νΣ f (~x, E)Φ(~x, E, t) dE

∑G
g=1
∫ Eg−1

Eg
νΣ f (~x, E)Φ(~x, E, t) dE

=
∑G

g=1 βi,gνΣf,gΦg

∑G
g=1 νΣf,gΦg

, (569o)

χp,g(~x, t) ≡

∫ Eg−1
Eg

∑G
g=1
∫ Eg′−1

Eg′
χp(~x, E, E′)(1− β(~x, E′))νΣ f (E′)Φ(~x, E′, t) dE′ dE

∑G
g=1
∫ Eg′−1

Eg′
(1− β(~x, E′))νΣ f (~x, E′)Φ(~x, E′, t) dE′

=
∑G

g′=1 χp,g,g′(1− βg′(~x, t))νΣf,g′Φg′

(1− β)∑G
g=1 νΣf,gΦg

. (569p)

Thus

1
4π

G

∑
g′=1

χp,g,g′(1− βg′)νΣf,g′Φg′ =
1

4π
χp,g(1− β)

G

∑
g′=1

νΣf,g′Φg′ . (569q)

By definition

G

∑
g=1

χp,g,g′(~x, t) ≡
G

∑
g=1

χp,g(~x, t) ≡ 1. (570)

Note that the group-averaged total cross sections is angular dependent. We can apply similar spherical harmonics
expansion to the total collision term,∫ Eg−1

Eg
Σt(~x, E)Ψ(~x, ~Ω, E, t) dE

=
∞

∑
`=0

2`+ 1
4π

`

∑
m=−`

∫ Eg−1

Eg
Σt(~x, E)Φ`,m(~x, E, t)Y`,m(~Ω) dE

=
∞

∑
`=0

2`+ 1
4π

`

∑
m=−`

Σt,g,`,m(~x, t)Φg,`,m(~x, t)Y`,m(~Ω),

where

Σt,g,`,m(~x, t) ≡

∫ Eg−1
Eg

Σt(~x, E)Φ`,m(~x, E, t) dE∫ Eg−1
Eg

Φ`,m(~x, E, t) dE
. (571a)

Note that it is possible Φg,`,m(~x, t) is equal to zero. In such a case, Σt,g,`,m(~x, t) is not defined and not needed. We
can re-define

Σt,g(~x, t) ≡ Σt,g,0,0(~x, t) (571b)

and modify the in-group scattering cross section with

Σg′→g
s,`,m (~x, t)← Σg′→g

s,`,m (~x, t) + (Σt,g(~x, t)− Σt,g,`,m(~x, t))δ`,0δm,0δg,g′ . (571c)

Although the group averaged velocity has the angular dependency, we can assume such a dependency is weak and
the averaged velocity can be redefined as

1

vg(~x, ~Ω, t)
≡

∫ Eg−1
Eg

1
v(E)Φ(~x, E, t) dE∫ Eg−1

Eg
Φ(~x, E, t) dE

. (571d)
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The above equations state the exact projection operation without homogenization in order that the multigroup
equation preserves the solution of the energy-dependent transport equation. Quantities including vg, Σt,g, νΣf,g,

χp,g, Σg′→g
s,`,m , χd,g,i are called group constants.

The above equations also mean that we can obtain the multigroup cross sections exactly only after we know the
continuous transport solution. The spectrum can be obtained by doing ultra-fine group calculations with proper
resonance treatment with some small reference configurations. We assume these reference configurations can pro-
duce the spectrum sufficiently accurate for the core level simulations.

Or we can introduce the multigroup approximation:

Ψ(~x, ~Ω, E, t) = Ψ̂(~x, ~Ω, t) fr(E), (572)

so

Φ(~x, E, t) = Φ̂(~x, t) fr(E), (573)

where r is the region index under consideration. fr(E) is called as the neutron spectrum of a region r. It is noted
that this approximation is consistent for energy refinement, i.e. the approximation diminishes when the energy
resolution is increased. With this approximation,

Σt,g(~x) ≡

∫ Eg−1
Eg

Σt(~x, E) fr(E) dE∫ Eg−1
Eg

fr(E) dE
, (574a)

νΣf,g(~x) ≡

∫ Eg−1
Eg

νΣf(~x, E) fr(E) dE∫ Eg−1
Eg

fr(E) dE
, (574b)

Σg′→g
s,` (~x) ≡

∫ Eg′−1
Eg′

[∫ Eg−1
Eg

Σs,`(~x, E′ → E) dE
]

fr(E′) dE′∫ Eg′−1
Eg′

fr(E′) dE′
, (574c)

1
vg(~x)

≡

∫ Eg−1
Eg

1
v(E) fr(E) dE∫ Eg−1

Eg
fr(E) dE

. (574d)

It is noted that this approximation makes Σt,g,`,m = Σt,g, m = −`, · · · , `; ` = 0, · · · , ∞ and the correction on the
in-group scattering is zero. We expect when the regions covering the domain are getting smaller and energy groups
are becoming thinner, the error caused by this approximation tends to be zero. The accuracy of the multigroup ap-
proximation depends on how the full range of energy is cut and number of regions are considered and also depends
on how well the spectrum can be obtained.

Comparing with the exact projection,

• the scattering cross section is now only `-dependent;

• the averaged neutron velocity is angular independent;

• all group constants have no time dependency.
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G Black Body Emission

Black body emission is a major physics of thermal radiation transport. It is is isotropic; depends on temperature
and wavelength; has the maximum energy emission. A black body absorbs all incident radiation, regardless of
wavelength and direction. Black body emission follows the Planck distribution bounded by a transparent medium
with refractive index n:

B(λ, T) =
2h̄c2

λ5
(

e
h̄c

λkT − 1
) =

C1

πn2λ5
(

e
C2

nλT − 1
) , (575)

where C1 = 2πh̄c2
0 and C2 = h̄c0

k . h̄ is the Planck constant; k is the Boltzmann constant; c is the speed of light in the
surrounding medium and λ is the wavelength. It it noted that n is the refractive index of the surrounding medium
and

c =
c0

n
. (576)

Or

B(ν, T) =
2

h̄2c2

(h̄ν)3

e
h̄ν
kT − 1

, (577)

where ν is the frequency. The unit is J
m2·sr . with the assumption of constant refractive index.

We will define

B ≡ 1
c

∫
4π

B(ν, T) dΩ =
4π

c
B (578)

for later use which has the unit of J·s
m3 .

Figure 14 Blackbody spectrum.

Certain properties can be observed:

• Wien’s Displacement Law If we let the derivative of the Planckian distribution with respect to λ equal to zero
(the transcendental equation)), (

1− C2

5nλT

)
e

C2
nλT = 1, (579)
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We obtain the solution

nλmaxT = C3, (580)

where C3 is known as the third radiation constant, equal to 2897.6µm · K.

• We also often care the following integral,∫ ∞

0
B(ν, T) dν =

1
4π

c0an2T4, (581)

where a is the radiation constant 8π5k4/(15h̄3c3
0).

• The Stefan-Boltzmann Law The total emissive power in the hemi-sphere

Eb =
∫ ∞

0

∫
~Ω·~n>0

∣∣∣~Ω ·~n∣∣∣ B(ν, T) dΩdν = π
∫ ∞

0
B(ν, T) dν = n2σT4, (582)

where the Stefan-Boltzmann constant, which depends on C1 and C2, is equal to π4

15
C1
C4

2
= 5.670× 10−8 W

m2·K4 . It

is noted that the total emissive power is proportional to n2. It is seen that

σ =
1
4

c0a (583)

• It is convenient to table the band emission with the following definition:∫ λ
0 B(λ, T)dλ∫ ∞
0 B(λ, T)dλ

=

∫ λ
0 B(λ, T)dλ

1
4π c0an2T4

=
∫ nλT

0

4πB(λ, T)
c0an3T5 d(nλT) =

∫ nλT

0

4C1

c0a(nλT)5
(

e
C2

nλT − 1
)d(nλT)

=
∫ x=nλT

0

15
( c2

π

)4

x5
(

e
C2
x − 1

)dx

≡ F(nλT) (584)

It is noted that if we use the frequency for the tabulation, the dependency on the refractive index is gone.

• The asymptotic behavior of Planck’s law for large wavelengths: The exponent may be approximated by a
two-term Taylor series, leading to

B(λ, T) ≈ 2πc0kT
nλ4 , for

C2

nλT
� 1, (585)

which can be obtained by letting h̄ → 0, i.e., by allowing photons of arbitrarily small energy content to be
emitted, as postulated by classical statistics. The above equation is the Rayleigh-Jeans distribution. It is noted
that the equation is accurate only for very large values of nλT, so it is of little significance of engineering
purpose.

The asymptotic behavior of Planck’s law for small wavelengths (neglecting the −1 in the denominator:

B(λ, T) ≈ C1

n2λ5 e−
C2

nλT , for
C2

nλT
� 1, (586)

which is named after Wien. This equation is very accurate over most of the spectrum, thus it is frequently
utilized in theoretical analysis in order to facilitate integration.
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H The Reflection and Refraction on a Medium Interface

We always assume the unit norm vector of the interface~n is pointing from medium 1 who has larger refractive index
n1, to the medium 2 whose refractive index is denoted with n2. θi is the angle formed by the incident direction ~Ω
and the interface norm ~n. θt is the angle formed by the refraction direction ~Ωt and the interface norm ~n. θr is the
angle formed by the reflection direction ~Ωr and the negative of the interface norm~n.

Interface

Figure 15 Reflection and refraction.

Specular reflection direction is

~Ωr = ~Ω− 2
(
~Ω ·~n

)
~n. (587)

Based on the Snell’s law

n1 sin θ1 = n2 sin θ2 (588)

or

n1

√
1− µ2

1 = n2

√
1− µ2

2, (589)

where µ1 = ~Ω ·~n and µ2 = ~Ω2 ·~n. There is a map from µ1 to µ2, defined on [µc, 1]⇒ [0, 1], where

µc =
1
n1

√
n2

1 − n2
2 (590)

is the cosine of the critical angle. Directly from the Snell’s law, we have

n1µ1dθ1 = n2µ2dθ2. (591)

The refraction direction is

~Ω2 =

√
1−

∣∣∣~Ω⊥∣∣∣2~n + ~Ω⊥, (592)

where

~Ω⊥ =
n1
n2

[
~Ω−

(
~Ω ·~n

)
~n
]

. (593)

The reflectance between two perfect dielectrics can be evaluated with the Fresnel’s relation In such a case, the
absorptive index k needs to be introduced.

n2 − k2 =
ε

ε0
= εr, (594)
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where ε is the electrical permittivity and ε0 is the the absolute dielectric permittivity of classical vacuum (8.854187817×
10−12 farads per meter.

n2 = εrµr, (595)

where µr is the relative permeability. For most naturally occuring materials, µr is very close to one at optical
frequencies, therefore the absorptive index k is close to zero.

The reflectance for s-polarized light is

R1→2
s (µ1) =

∣∣∣∣n1µ1 − n2µ2

n1µ1 + n2µ2

∣∣∣∣2 . (596)

The transmittivity

T1→2
s (µ1) = 1− R1→2

s (µ1) =
4n1µ1n2µ2

(n1µ1 + n2µ2)
2 . (597)

For p-polarized light the reflectance is

R1→2
p (µ1) =

∣∣∣∣n1µ2 − n2µ1

n1µ2 + n2µ1

∣∣∣∣2 . (598)

The transmittivity

T1→2
p (µ1) = 1− R1→2

p (µ1) =
4n1µ2n2µ1

(n1µ2 + n2µ1)
2 . (599)

The reflectance for unpolarized light is

R1→2(µ1) =
R1→2

s (µ1) + R1→2
p (µ1)

2
. (600)

When µ2 is zero, i.e. the incident direction is aligned with the critical angle µ1 = µc, the reflectance is one.

For all the directions whose µ1 < µc or θ1 > θc, total reflection will happen. When µ1 = µ2 = 1, the reflectance is
n1−n2
n1+n2

. It is noted that the reflectance evaluated with the opposite direction follows

R2→1(µ2) = R1→2(µ1), (601)

R2→1
s (µ2) = R1→2

s (µ1), (602)

R2→1
p (µ2) = R1→2

p (µ1). (603)

Similar rules apply to the transmittivity equations.

When the equations apply to the specific intensity, we need to take the solid angle change into account.

dΩ1 = sin θ1dθ1dϕ (604)

dΩ2 = sin θ2dθ2dϕ =
n1

n2
sin θ1dθ2dϕ =

n1

n2
sin θ1

n1µ1

n2µ2
dθ1dϕ =

n2
1

n2
2

µ1

µ2
dΩ1 (605)

We can see

µ2dΩ2 = sin θ2dθ2dϕ =
n1

n2
sin θ1dθ2dϕ =

n1

n2
sin θ1

n1µ1

n2µ2
dθ1dϕ =

n2
1

n2
2

µ1dΩ1 (606)

The energy conservation would be

I1(µ1)µ1dΩ1dA = R1→2(µ1)I1(µ1)µ1dΩ1dA + I2(µ2)µ2dΩ2dA,
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which means the transmitted intensity should be

I2(µ2) =
n2

2
n2

1
(1− R1→2(µ1))I1(µ1). (607)

An extra coefficient n2
2

n2
1

needs to be multiplied with the transmitted intensity. This is also known as the radiance

conservation theorem. Based on this theorem, the interface condition for specific intensity will be

I1(~Ω) = R1→2(
∣∣∣~Ω ·~n∣∣∣)I1(~Ωr) + (1− R1→2(

∣∣∣~Ω ·~n∣∣∣))n2
1

n2
2

I2(~Ωt), ~Ω ·~n < 0 (608a)

I2(~Ωt) = R1→2(
∣∣∣~Ω ·~n∣∣∣)I2(~Ωtr) + (1− R1→2(

∣∣∣~Ω ·~n∣∣∣))n2
2

n2
1

I1(~Ω), ~Ωt ·~n > 0 (608b)

~Ωtr is the reflecting direction of ~Ωt with respect to the surface with normal ~n. When n1 = n2, these conditions
reduce to the normal continuity condition in neutron transport.

We can perform the integral

1
π

∫
~Ω2·~n>0

T1→2(~Ω1 ·~n)
∣∣∣~Ω2 ·~n

∣∣∣ dΩ2 = 2
∫ 1

0
T1→2(µ1)µ2dµ2 = 2

∫ 1

µc
T1→2(µ1)

n2
1

n2
2

µ1dµ1 (609)

to obtain the spectral hemispherical transmissivity. The results are

εs =
4(2n + 1)
3(n + 1)2 , (610)

εp =
4n3(n2 + 2n− 1)
(n2 + 1)(n4 − 1)

+
2n2(n2 − 1)2

(n2 + 1)3 ln
(

n + 1
n− 1

)
− 16n4(n4 + 1) ln n

(n2 + 1)(n4 − 1)2 , (611)

ε =
εs + εp

2
(612)

These equations can be used to predict the surface emissivity, which by Kirchhoff’s law the emissivity is equal to
the transmissivity.
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I Rattlesnake Publications

This appendix collects all publications related with Rattlesnake.
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